Workgroup: Internet Engineering Task Force
Internet-Draft: draft-gwerder-messagevortexmain-01

Published: 24 February 2019
Intended Experimental
Status: 28 August 2019
Expires: M. Gwerder
Author: FHNW

MessageVortex Protocol

Abstract

MessageVortex Protocol is a protocol to achieve different degrees of anonymity. It specifies
messages embedded within existing transfer protocols such as SMTP or XMPP to send them
via peer nodes to one or more recipients.

The protocol outperforms other protocols by decoupling transport from the final transmitter
and receiver party. There is no trust put into any infrastructure except for the infrastructure
of the sending and receiving party of a message. The creator of the routing block has full
control over the message flow. Routing nodes gain no non-obvious knowledge about
messages even when collaborating. Third-party anonymity is always achieved.
Furthermore, the protocol allows achieving either sender or receiver anonymity.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP
79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be
updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use
Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 August 2019.
Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights
reserved.

Gwerder Expires 28 August 2019 Page 1

https://datatracker.ietf.org/drafts/current/

Internet-Draft MessageVortex Protocol February 2019

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Revised BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction
1.1. Requirements Language
1.2. Protocol Specification

1.3. Number Specification

2. Entities Overview
2.1. Node
2.1.1. Blocks
2.1.2. NodeSpec
2.1.2.1. NodeSpec for SMTP nodes
2.1.2.2. NodeSpec for XMPP nodes

2.2. Peer Partner

2.3. Encryption keys
2.3.1. Identity Keys
2.3.2. Peer Key
2.3.3. Sender Key

2.4. Vortex Message

2.5. Message

2.6. Key and MAC specifications and usages
2.6.1. Asymmetric Keys
2.6.2. Symmetric Keys

2.7. Transport Address

2.8. ldentity
2.8.1. Peer Identity
2.8.2. Ephemeral Identity

Gwerder Expires 28 August 2019 Page 2

https://trustee.ietf.org/license-info

Internet-Draft MessageVortex Protocol February 2019

2.8.3. Official Identity

2.9. Workspace
2.10. Multi-Use Reply Blocks

3. Layer Overview
3.1. Transport Layer
3.2. Blending Layer
3.3. Routing Layer
3.4. Accounting Layer

4. Vortex Message
4.1. Overview
4.2. Message Prefix Block (MPREFIX)
4.3. Inner Message Block
4.3.1. Control Prefix Block
4.3.2. Control Blocks
4.3.2.1. Header Block
4.3.2.2. Routing Block
4.3.3. Payload Block
5. General notes
5.1. Supported Symmetric Ciphers
5.2. Supported Asymmetric Ciphers
5.3. Supported MACs
5.4. Supported Paddings
5.5. Supported Modes
6. Blending
6.1. Blending in Attachments
6.1.1. PLAIN embedding into attachments
6.1.2. F5 embedding into attachments
6.2. Blending into an SMTP layer
6.3. Blending into an XMPP layer

Gwerder Expires 28 August 2019 Page 3

Internet-Draft

7. Routing

MessageVortex Protocol

7.1. Vortex Message Processing

7.1.1.
7.1.2.

7.1.3. Processing of Outgoing MessageVortex Messages

Processing of incoming Vortex Messages

Processing of Routing Blocks in Workspace

7.2. Header Requests

7.2.1.
7.2.2.
7.2.3.
7.2.4.
7.2.5.
7.2.6.
7.2.7.
7.2.8.

Request New Ephemeral Identity
Request Message Quota

Request Increase of Message Quota
Request Transfer Quota

Query Quota

Request Capabilities

Request Nodes

Request Identity Replace

7.3. Special Blocks

7.3.1.
7.3.2.

Error Block

Requirement Block

7.3.2.1. Puzzle Requirement

7.3.2.2. Payment Requirement

7.4. Routing Operations

7.4.1.
7.4.2.
7.4.3.
7.4.4.

Mapping Operation
Split and Merge Operations
Encrypt and Decrypt Operations

Add and Remove Redundancy Operations

7.4.4.1. Padding Operation
7.4.4.2. Apply Matrix

7.4.4.3. Encrypt Target Block

7.5. Processing of Vortex Messages

Gwerder

Expires 28 August 2019

February 2019

Page 4

Internet-Draft MessageVortex Protocol February 2019

8. Accounting
8.1. Accounting Operations
8.1.1. Time-Based Garbage Collection
8.1.2. Time-Based Routing Initiation
8.1.3. Routing Based Quota Updates
8.1.4. Routing Based Authorization
8.1.5. Ephemeral Identity Creation

9. Acknowledgments
10. IANA Considerations
11. Security Considerations
12. References
12.1. Normative References

12.2. Informative References

Appendix A. The ASN.1 schema for Vortex messages
A.1. The main VortexMessageBlocks
A.2. The VortexMessage Ciphers Structures
A.3. The VortexMessage Replies Structures
A.4. The VortexMessage Requirements Structures
A.5. The VortexMessage Helpers Structures

A.6. The VortexMessage Additional Structures

Author's Address

1. Introduction

Anonymization is hard to achieve. Most of the attempts in the past rely on either trust in a
dedicated infrastructure or a specialized networking protocol.

Instead of defining a transport layer, MessageVortex piggybacks on other transport
protocols. A blending layer embeds Vortex messages into ordinary messages of that
transport protocol. A blending layer picks the messages up, applies local operations to it
and resends the new chunks to the next recipients.

Gwerder Expires 28 August 2019 Page 5

Internet-Draft MessageVortex Protocol February 2019

A processing node learns as little as possible from the message due to the nature of the
operations processed. The onionized structure of the protocol makes it impossible to follow
the trace of a message without having control over the processing node itself.

MessageVortex is a protocol which allows sending and receiving messages by using a
routing block instead of a destination address. The sender has full control over all
parameters of the message flow.

A message is split and reassembled during transmission. Chunks of the message may carry
redundant information to avoid service interruptions of the message transit. Decoy traffic
and message traffic are not differentiable as the nature of the addRedundancy operation
allows each generated part to be a message part or decoy. Any routing node is thus unable
to differentiate between the message and decoy traffic.

Any Receiver knows after processing whether a message is destined for it (it creates a
chunk with ID 1) or other nodes (processing instructions only). Due to the missing keys, no
other node may do this processing.

This RFC starts with the general terminology (see Section 2). Next, a general overview of
the process is given (see Section 3). Lastly, the subsequent sections describe the details of
the protocol.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

1.2. Protocol Specification

Appendix A specifies all relevant parts of the protocol in ASN.1 (see [CCITT.X680.2002] and
[CCITT.X208.1988]). The blocks are, if not otherwise mentioned, DER encoded.

1.3. Number Specification

All numbers within this document are, if not suffixed, decimal numbers. Numbers suffixed
with a small letter 'h' followed by two hexadecimal digits are octets in hexadecimal writing.
A blank in ASCII (" ') is written as 20h and a capital 'K' in ASCII as 4Bh.

2. Entities Overview

Within this document, we refer to the entities as defined below.

2.1. Node

We use the term 'node' to describe any system connected to other nodes, and supporting
the MessageVortex Protocol. A 'node address' is typically an email address, an XMPP
address, or any other transport protocol identity supporting the MessageVortex protocol.
Any address SHOULD include a public part of an 'identity key' allowing to transmit
messages safely. One or more addresses MAY belong to the same node.

Gwerder Expires 28 August 2019 Page 6

Internet-Draft MessageVortex Protocol February 2019

2.1.1. Blocks

We use the term 'block' for an ASN.1 sequence in a transmitted message. We embed
messages in the transport protocol. These messages may have any size.

2.1.2. NodeSpec

A nodeSpec block as specified in Appendix A.5 expresses in a unified format an addressable
node. The nodeSpec contains a reference to the routing protocol, the routing address within
this protocol and the keys required for addressing the node. This RFC specifies transport
layers for XMPP and SMTP. Adding transport layers requires to write an extension to this
RFC.

2.1.2.1. NodeSpec for SMTP nodes

An alternative address representation is defined. This address allows a standard email client
to address a vortex node. An alternative representation SHOULD be supported as defined
below as smtpAlternateSpec (specification noted in ABNF as specified in [RFC5234]). For
applications with QR code support, the smtpUrl representations SHOULD be used.

localPart = <local part of address>

domain = <domain part of address>

email = localPart "@" domain

keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>
smtpAlternateSpec = localPart ".." keySpec ".." domain "@localhost"
smtpUrl = "vortexsmtp://" smtpAlternateSpec

This representation does not support quoted local part SMTP addresses.

2.1.2.2. NodeSpec for XMPP nodes

Typically a node specification is specified with the ASN.1 block NodeSpec. To allow
addressing of a vortex node with an ordinary XMPP client, the alternative representation
SHOULD be supported as defined below as jidAlternateSpec (specification noted in ABNF as
specified in [RFC5234]).

localPart = <local part of address>

domain = <domain part of address>

resourcePart = <resource part of the address>

jid = |localPart "@" domain ["/" resourcePart]

keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>;

jidAlternateSpec = localPart ".." keySpec ".."
domain "@localhost" ["/" resourcePart]
jidurl = "vortexxmpp://" jidAlternateSpec

2.2. Peer Partner

We use the term 'peer partner' as two or more message sending or receiving entities. One
of these peer partners sends a message, and all other peer partners receive one or more
messages. Peer partners are message specific. Every peer partner always connects directly
to a node.

Gwerder Expires 28 August 2019 Page 7

Internet-Draft MessageVortex Protocol February 2019

2.3. Encryption keys

There are several keys required for a Vortex message. For identities and ephemeral
identities (see below) we use asymmetric keys. For message encryption, we use symmetric
keys.

2.3.1. Identity Keys

Every participant of the network has an asymmetric key. These keys SHOULD be either EC
keys with a minimum length of 384 bits or RSA keys with a minimum length of 2048 bits.

The public key needs to be known by all parties writing to or through that node.

2.3.2. Peer Key

Peer keys are symmetrical keys transmitted with a Vortex message. Peer keys are always
known to the node sending a message, the node receiving the message from the sender,
and to the creator of the routing block.

A peer key is included in the identity block of a Vortex message and the building
instructions for a Vortex message (see RoutingCombo in Appendix A).

2.3.3. Sender Key

The sender key is a symmetrical key protecting the identity and routing block of a Vortex
message. It is encrypted with the receiving peer key and prefixed to the identity block. This
key decouples further identity and processing information from the previous key.

A sender key is known to precisely one peer of a Vortex message and the creator of the
routing block.

2.4. Vortex Message

We use the term 'Vortex message' for a single transmission between two routing layers. A
message adapted to the transport layer by the blending layer is called a 'blended Vortex
message' (see Section 3).

A full vortex message contains the following items:

* The peer key (encrypted with the host key of the node; stored in a PrefixBlock) protects
the inner Vortex message (innerMessageBlock).

* The small padding guarantees that a replayed routing block with different content does
not look alike.

* The sender key (encrypted with the host key of the node) protecting the identity and
routing block.

* The identity block (protected by the sender key) contains information about the
ephemeral identity of the sender, replay protection information, header requests
(optional) and a requirement reply (optional).

* The routing block (protected by the sender key) containing information on how
subsequent messages are processed, assembled and blended.

* The payload block (protected by the peer key) contains payload chunks for processing.

Gwerder Expires 28 August 2019 Page 8

Internet-Draft MessageVortex Protocol February 2019

2.5. Message

A Message is a content to be transmitted from one sender to the recipient. The Sender uses
a routing block to achieve this which is either built by him or provided by the receiver. A
Message may be anonymous. There are however different degrees of anonymity:

* If the sender of a message is not known to anyone else except the sender, we refer to
that as 'sender anonymity.'

¢ If the receiver of a message is not known to anyone else except the receiver, we refer
to that as 'receiver anonymity.'

e If an attacker is unable to determine content, original sender, and final receiver, we
refer to that as third-party anonymity.

* If a sender or a receiver may be determined as "one of a set of <k> entities we refer to
it as k-anonymity (for more about this see [KAnon]).

A message is always MIME encoded as specified in [RFC2045].

2.6. Key and MAC specifications and usages

MessageVortex uses a unique encoding for keys. It is designed to be small and flexible
while maintaining a specific base structure.

The following key structures exist:

* SymmetricKey
* AsymmetricKey

MAC does not need a complete structure containing specs and value. Instead only a
MacAlgorithmSpec is available. The following sections outline the constraints when
specifying parameters for these structures. A node MUST NOT specify any parameter more
than once.

If a crypto mode is specified requiring an IV, a node MUST provide the IV when specifying
the key.

2.6.1. Asymmetric Keys

Nodes use asymmetric keys for identifying peer nodes (identities) and encrypting
symmetric keys (for later de-/encryption of payload or blocks). All asymmetric keys MUST
contain a key type specifying a strictly normed key. They MUST contain a public part of the
key encoded as X.509 container and a private key as specified in PKCS#8 wherever
possible.

RSA and EC keys must contain a keysize parameter. All asymmetric keys SHOULD contain a
padding parameter. A node SHOULD assume PKCS#1 if no padding is specified.

NTRU specification MUST provide parameters "n", "p", and "q".

2.6.2. Symmetric Keys

Nodes use symmetric keys for encrypting payload and control blocks. These symmetric
keys MUST contain a key type specifying a key. They MUST contain a key in an encoded
form.

Gwerder Expires 28 August 2019 Page 9

Internet-Draft MessageVortex Protocol February 2019

A node MUST provide a keysize parameter if the key (or equivalently block) size is not
standardized or encoded in the name. All symmetric key specification MUST contain a mode
and padding parameter. A node MAY list multiple padding or mode parameters in a
ReplyCapability block to give the recipient a free choice.

2.7. Transport Address

We use the term 'transport address' for the token required to address the next immediate
node on the transport layer. An email transport layer would have SMTP addresses such as
'vortex@example.com' as transport address.

2.8. Identity

2.8.1. Peer Identity
The peer identity may contain the following information of a peer partner:

* A transport address (always) and the public key of this identity (given there is no
recipient anonymity)

¢ A routing block. This block may be used to contact the sender (optional). If striving for
recipient anonymity, this block is required.

* The private key (only known by the owner of the identity)

2.8.2. Ephemeral Identity

Ephemeral identities are temporary identities created on a single node. These identities
MUST NOT relate to any other identity on any other node. They allow bookkeeping for a
node. Each ephemeral identity has a workspace assigned. Every ephemeral identity may
have the following items assigned:

* An asymmetric key pair to represent the identity
e A validity time of the identity

2.8.3. Official Identity
An official identity may have the following items assigned:
¢ Routing blocks to be used to reply to the node.

¢ A list of assigned ephemeral identities on all other nodes and their projected quotas.
* A list of known nodes and the respective node identity

2.9. Workspace

Every official or ephemeral identity has a workspace. A workspace consists of the following
elements:

e Zero or more routing blocks to be processed
* Slots for payload block sequentially numbered. Every slot...
o MUST contain a numerical ID identifying the slot
o MAY contain a payload content
° If a block contains a payload, it MUST contain a validity period.

Gwerder Expires 28 August 2019 Page 10

Internet-Draft MessageVortex Protocol February 2019

2.10. Multi-Use Reply Blocks

We use the term 'multi-use reply blocks' (MURB) for a special routing block sent to a
receiver of a message or request. A sender may use such a block once or several times to
reply to the sender linked to the ephemeral identity. It is possible to achieve sender
anonymity using these blocks.

3. Layer Overview

The protocol is designed in four layers as shown in Figure 1.

+ +
| Vortex Node |
+ + |
| Accounting []
| ']
|
+ + |
|] Routing |
I I
|
| + + + + |
| Blending |] Blending |]
I N I
I I
+ + + + + +
| Transport | | Transport in | | Transport out |

Figure 1: Layer overview

Every participating node MUST implement the layers blending, routing, and accounting.
There MUST be at least one incoming and one outgoing transport layer available to a node.
All blending layers SHOULD connect to respective Transport layers for sending and
receiving packets.

3.1. Transport Layer

The transport layer embeds the blended MessageVortex packets into the data stream of the
existing transport layer protocol.

The transport layer infrastructure SHOULD NOT be specific to anonymous communication
and should contain significant parts of non-MessageVortex traffic.

3.2. Blending Layer

The blending layer embeds MessageVortex packets into the transport layer data stream and
extracts MessageVortex packets from the transport layer.

Gwerder Expires 28 August 2019 Page 11

Internet-Draft MessageVortex Protocol February 2019

3.3. Routing Layer

The Routing Layer expands information contained in MessageVortex packets, processes
them, and passes generated packets to the respective Blending Layer.

3.4. Accounting Layer

The accounting layer keeps track of all ephemeral identities authorized to use a
MessageVortex node. It verifies the available quotas to an ephemeral identity.

4. Vortex Message

4.1. Overview

Figure 2 shows a Vortex message. The enclosed sections denote encrypted blocks. The
three to four letter abbreviations denote the key required for decryption. The abbreviation
k_h stands for the asymmetric host key. sk _p is the symmetric peer key. The receiving node
obtains this key by decrypting MPREFIX with its host key k_h. sk_s is the symmetric sender
key. When decrypting the MPREFIX block, the node obtains this key. The sender key protects
the header and the routing blocks. This key guarantees that the node assembling the
message does not know about upcoming identities, operations, and requests. The peer key
protects the message including structure from any third party observer.

s o St S A S S
LE T IS TR | |

LI I TIPLTIHTTO] | |
MI[IPIIR[I[E[]I|U]] P []
PIIIATIELTIATLITI] A ||
[IRIIIDIIELLIDILIVI] Y |
EIIIDIIIIITE]TINT] L |]
FITIVITXTIIRTIIGT] O [
[IVITIN ===+ [A []
X|||G| kh |sks|sks | D |]

[]| I I I |]

| k. h | sk p |

Figure 2: Vortex message overview

4.2. Message Prefix Block (MPREFIX)

The PrefixBlock contains a symmetrical key as defined in Appendix A.1 and is encrypted
using the host key of the receiving peer host. The symmetric key used MUST be one out of
the set advertised by a CapabilitiesReplyBlock (see Section 7.2.6). A node MAY choose any
parameters omitted in the CapabilitiesReplyBlock freely (unless stated otherwise in Section
7.2.6). A node SHOULD avoid sending unencrypted PrefixBlocks. A prefix block MUST
contain the same forward-secret as the other prefix, the routing block, and the header
block. A host MAY reply to a message with an unencrypted message block. Any reply to a
message SHOULD be encrypted.

Gwerder Expires 28 August 2019 Page 12

Internet-Draft MessageVortex Protocol February 2019

The sender MUST choose a key which may be encrypted with the host key using the
padding advertised by the CapabilitiesReplyBlock.

4.3. Inner Message Block

A node MUST always encrypt (with the symmetric key of the PrefixBlock) an
InnerMessageBlock. The encryption hides the inner structure of the message. The
InnerMessageBlock SHOULD always accommodate four or more payload chunks.

An InnerMessageBlock always starts with a padding block. This padding guarantees that
when using the same routing block multiple times, its binary structure is not repeated
throughout the messages with the same routing block. The padding MUST be the first 16
bytes of the first four non-empty payload chunks (PayloadChunks). If a payload chunk is
shorter than 16 bytes, the content of the padding SHOULD be filled with zero-valued bytes
(00h) at very end up to the required number of bytes. An inner message block
(InnerMessageBlock) SHOULD contain at least four payload chunks sized 16 bytes or bigger.
If there are less than four payload chunks, then the padding MUST contain a random
sequence of 16 bytes for the missing payload chunks. A node MUST NOT reuse random
sequences.

An InnerMessageBlock contains so-called forwardSecrets. This random number MUST be the
same in the HeaderBlock, the RoutingBlock, and the PrefixBlock. Nodes receiving Messages
containing non-matching forwardSecrets MUST discard these messages, and SHOULD NOT
send an error message.

4.3.1. Control Prefix Block

Control prefix block (CPREFIX) and MPREFIX block share the same structure and logic. It
contains the sender key sk_s. If an MPREFIX block was unencrypted, a node MAY omit the
CPREFIX block. An omitted CPREFIX block results in unencrypted control blocks
(HeaderBlock and RoutingBlock).

A prefix block MUST contain the same forwardSecret as the other prefix, the routing block,
and the header block.

4.3.2. Control Blocks

The control blocks contain the core information to process the payload. It contains a
HeaderBlock and a RoutingBlock.

4.3.2.1. Header Block
The header block (see HeaderBlock in Appendix A) contains the following information:

e [t MUST contain the local ephemeral identity of the routing block builder.
e [t MAY contain header requests.

* [t MAY contain the solution to a PuzzleRequired block previously opposed in a header
request.

The list of header requests MAY one of the following:

* be empty
e contain a single identity create request (HeaderRequestidentity)
e contain a single increase quota request

Gwerder Expires 28 August 2019 Page 13

Internet-Draft MessageVortex Protocol February 2019

If a header block violates these rules, then a node MUST NOT reply to any header requests.
Payload and routing blocks SHOULD still be added to the workspace and processed, given
the message quota is not exceeded.

4.3.2.2. Routing Block
The routing block (see RoutingBlock in Appendix A) contains the following information:

e It MUST contain a serial number uniquely identifying the routing block of this user. A
serial number MUST be unique during the lifetime of a routing block.

e |t MUST contain the same forward secret as the two prefix blocks and the header block.
e [t MAY contain assembly and processing instructions for subsequent messages.
* [t MAY contain a reply block for messages assigned to the owner of the identity.

4.3.3. Payload Block

Each InnerMessageBlock containing routing information SHOULD contain at least four
PayloadChunks.

5. General notes

The MessageVortex protocol is a modular protocol. It allows using different encryption
algorithms. For operation, a Vortex node SHOULD always support at least two completely
different (i.e., relying on two different mathematical problems) types of algorithms,
paddings, or modes.

5.1. Supported Symmetric Ciphers
A node MUST support the following symmetric ciphers:

* AES128 (see [FIPS-AES] for AES implementation details)

* AES256

e CAMELLIA128 (see [RFC3657] chapter 3 for Camellia implementation details)
* CAMELLIA256

A node SHOULD support any standardized, bigger key size than the smallest key.

A node MAY support Twofish ciphers (see [TWOFISH]).

5.2. Supported Asymmetric Ciphers
A node MUST support the following asymmetric ciphers:
* RSA (key sizes bigger or equal to 2048) ([RFC8017])
¢ ECC (named curves secp384rl, sect409k1, secp521rl) (see [SEC1])

5.3. Supported MACs
A node MUST support the following Message Authentication Codes (MAC):

* SHA256 (see [ISO-10118-3] for SHA implementation details)
* RipeMD160 (see [ISO-10118-3] for RIPEMD implementation details)

Gwerder Expires 28 August 2019 Page 14

Internet-Draft MessageVortex Protocol February 2019

A node SHOULD support the following MACs:

* SHA512
* RipeMD256
* RipeMD512

5.4. Supported Paddings
A node MUST support the following paddings specified in [RFC8017]:

* PKCS1 (see [RFC8017])
* PKCS7 (see [RFC5958])

5.5. Supported Modes
A node MUST support the following modes:

* CBC (see [RFC1423]). The used IV must be of equal length as the key)
* EAX (see [EAX])

* GCM (see [RFC5288])

* NONE (only used in special cases. See Section 11)

A node SHOULD NOT use the following modes:

* NONE (Except as stated when using the addRedundancy function
* ECB

A node SHOULD support the following modes:

* CTR ([RFC3686])
* CCM ([RFC3610])
* OCB ([RFC7253])
* OFB ([MODESI)

6. Blending

Each node supports a fixed set of blending capabilities. They may be different for incoming
and outgoing messages.

The following sections describe the blending mechanism. There are currently two blending
layers specified. One layer specification for the simple mail transfer protocol (SMTP; See
[RFC5321]) and one for the Extensible Messaging and Presence Protocol (XMPP; See
[RFC6120]). All nodes MUST at least support "encoding=plain:0,256".

6.1. Blending in Attachments

There are two types of blending supported when using attachments.

e Plain binary encoding with offset (PLAIN)
* Embedding with F5 in an image (F5)

Gwerder Expires 28 August 2019 Page 15

Internet-Draft MessageVortex Protocol February 2019

A node MUST support PLAIN blending for reasons of interoperability. A node MAY support
blending using F5.

6.1.1. PLAIN embedding into attachments

A blending layer embeds a VortexMessage in a carrier file with an offset for PLAIN blending.
For replacing a file start, a node MUST use the offset 0. The routing node MUST choose the
payload file for the message. A routing node SHOULD use a credible payload type (e.qg.,
MIME type) with high entropy. It furthermore SHOULD prefix a valid header structure to
avoid easy detection of the Vortex message. A routing node SHOULD use a valid footer, if
any, to a payload file to improve blending.

A node SHOULD offer at least one PLAIN blending method for incoming Vortex messages. A
node may offer multiple offsets for incoming Vortex messages.

A plain blending is specified as follows:

plainEncoding = "("plain:" <numberOfBytesOfOffset>
["," <numberOfBytesOfOffset> J* ")"

6.1.2. F5 embedding into attachments

For F5, a blending layer embeds a VortexMessage into a jpeg file according to [F5]. The
password for blending may be publicly known. A routing node MAY advertise multiple
passwords. The use of F5 adds roughly a tenfold of transfer volume to the message. A
routing block building node SHOULD only use F5 blending where appropriate.

A blending in F5 is specified as follows:
f5Encoding = "(F5:" <passwordString> ["," <PasswordString> J* ")"

Whereas commas or backslashes in passwords MUST be escaped with a backslash. Closing
brackets are treated as normal password character unless they are the last character of the
encoding specification string.

6.2. Blending into an SMTP layer

Email messages containing messages MUST be encoded with Multipurpose Internet Mail
Extensions (MIME) as specified in [RFC2045]. All nodes MUST support BASE64 encoding. A
node MUST test all sections of a MIME message for the presence of a VortexMessage.

A vortex message is present if a block containing the peer key at the known offset of any
MIME part decodes correctly.

A node SHOULD support SMTP blending for sending and receiving. For sending SMTP as
specified in [RFC5321] must be used. TLS layers MUST always be applied when obtaining
messages using POP3 (as specified in [RFC1939] and [RFC2595]) or IMAP (as specified in
[RFC3501]). Any SMTP connection MUST employ a TLS encryption when passing any
credentials.

Gwerder Expires 28 August 2019 Page 16

Internet-Draft MessageVortex Protocol February 2019

6.3. Blending into an XMPP layer
For interoperability, an implementation SHOULD provide XMPP blending.

Blending into XMPP traffic is done using the [XEP-0231] extension of the XMPP protocol.

PLAIN and F5 blending is acceptable for this transport layer.

7. Routing

7.1. Vortex Message Processing

7.1.1. Processing of incoming Vortex Messages

An incoming message is considered unauthenticated at first. A node should consider a
VortexMessage as authenticated as soon as the ephemeral identity is known and is not
temporary.

For an unauthenticated message the following rules apply:

* A node MUST ignore all Routing blocks.
* A node MUST ignore all Payload blocks.
* A node SHOULD accept identity creation requests in unauthenticated messages.
* A node MUST ignore any other header request except identity creation requests.

* A node MUST ignore all identity creation requests which belong to an already existing
identity.

A message is considered authenticated as soon as the identity used in the header block is
known and not temporary. A node MUST NOT treat a message as authenticated if the
specified maximum number of replays have been reached. For authenticated messages the
following rules apply:

¢ A node MUST ignore identity creation requests.

* A node MUST replace the current reply block with the reply block provided in the routing
block (if any). The node MUST keep the reply block if no reply block is provided.

* A node SHOULD process all header requests.
* A node SHOULD add all routing blocks to the workspace.
¢ A node SHOULD add all payload blocks to the workspace.

A routing node MUST decrement the message quota by one if a received message is
authenticated and contains at least one payload block. If a message is identified as
duplicate according to the reply protection, a node MUST NOT decrement the message
quota.

7.1.2. Processing of Routing Blocks in Workspace

A routing workspace consists of the following items:

e The identity linked to it (This determines the lifetime of the workspace).
e The routing combos (RoutingCombo) linked to it.

Gwerder Expires 28 August 2019 Page 17

Internet-Draft MessageVortex Protocol February 2019

* A payload chunk space. Multiple subspaces are available within this space:

o ID 0 represents a message to be embedded (when reading) or a message to be
extracted to the user (when written).

o ID 1 to ID maxPayloadBlocks represents the payload chunk slots in the target
message.

o All blocks between ID maxPayloadBlocks+1 to ID 32767 belong to a temporary
routing block specific space.

o All blocks between ID 32768 to ID 65535 belong to a shared space available to all
operations of this identity.

The accounting layer typically triggers processing. It represents either a cleanup action or a
routing event. A cleanup event deletes the following information from all workspaces:

* All processed routing combos.

e All routing combos with expired usagePeriod.

* All payload chunks when exceeded their maxProcess time.
* All expired objects.

* All expired puzzles.

* All expired identities.

* All expired replay protections.

Note that maxProcessTime reflects the number of seconds since the arrival of the last octet
of the message at the transport layer facility. A node SHOULD NOT take additional
processing time (e.g., for anti-UBE or anti-virus) into account.

The accounting layer triggers routing events. The trigger occurs at least minProcessTime
after the last octet of the message arrived at the routing layer. A node SHOULD choose the
latest possible moment in such a way that the peer node receives the last octet of the
assembled message before maxProcessTime is reached. The calculation of the last point in
time where a message may be set SHOULD always assume that the target node is working.
A sending node SHOULD choose the time within these bounds randomly. An accounting
layer MAY trigger multiple routing combos in bulk to further obfuscate the identity of a
single transport message.

First, the processing node escapes the payload chunk at ID 0 if needed (non-special block
starting with a backslash). Next, it executes all processing instructions of a routing combo
in the sequence specified. If an instruction fails, the block at the target ID of the operation
remains unchanged. The routing layer proceeds with the subsequent processing
instructions, ignoring the error. For a detailed description of the operations see Section 7.4.
If a node succeeds in building at least one payload chunk, a VortexMessage is composed
and passed to the blending layer.

7.1.3. Processing of Outgoing MessageVortex Messages

The blending layer MUST then compose a transport layer message according to the
specification provided in the routing combo. It SHOULD choose any decoy message or
steganographic carrier in such a way that the dead parrot syndrome as specified in
[DeadParrot] is avoided.

Gwerder Expires 28 August 2019 Page 18

Internet-Draft MessageVortex Protocol February 2019

7.2. Header Requests

Header requests are control requests for the anonymization system. Messages with
requests or replies only MUST NOT affect any quota.

7.2.1. Request New Ephemeral Identity

Requesting a new ephemeral identity is done by sending a message containing a header
block with the new identity and an identity creation request (HeaderRequestldentity) to a
node. The node MAY send an error block (see Section 7.3.1) if rejecting the request.

If a node accepts an identity creation request, it MUST send a reply. To accept a request
without a requirement, an accepting node MUST send back a special block containing "no
error". To accept a block with a requirement, an accepting node MUST send a special block
containing a requirement block.

7.2.2. Request Message Quota

Any valid ephemeral identity may request to raise the current message quota to a specific
value at any time. The request MUST include a reply block in the header. The request may
contain other parts. If a requested value is lower than the current quota, the node SHOULD
NOT refuse the quota request and SHOULD send a "No Error" status.

A node SHOULD reply to a HeaderRequestincreaseMessageQuota request (see Appendix A)
of a valid ephemeral identity. The reply MUST include a requirement, an error message or a
“No Error" status message.

7.2.3. Request Increase of Message Quota

A node may request to increase the current message quota. The increase is requested by
sending a HeaderRequestincreaseMessageQuota request to the routing node. The value
specified within the node is the new quota. HeaderRequestincreaseMessageQuota requests
MUST include a reply block. A node SHOULD NOT use a previously sent MURB to reply.

If the requested quota is higher than the current quota, then the node SHOULD send a "no
error" reply. If the requested quota is not accepted, the node SHOULD send a
requestedQuotaOutOfBand reply.

A node accepting the request MUST send a RequirementBlock or a "no error block".

7.2.4. Request Transfer Quota

Any valid ephemeral identity may request to raise the current transfer quota to a specific
value at any time. The request MUST include a reply block in the header. The request may
contain other parts. If a requested value is lower than the current quota, the node SHOULD
NOT refuse the quota request and SHOULD send a "No Error" status.

A node SHOULD reply to a HeaderRequestincreaseTransferQuota request (see Appendix A)
of a valid ephemeral identity. The reply MUST include a requirement, an error message, or a
“No Error" status message.

7.2.5. Query Quota

Any valid ephemeral identity may request the current message and transfer quota. The
request MUST include a reply block in the header. The request may contain other parts.

Gwerder Expires 28 August 2019 Page 19

Internet-Draft MessageVortex Protocol February 2019

A node MUST reply to a HeaderRequestQueryQuota request (see Appendix A). The reply
MUST include the current message quota and the current message transfer quota. The
reply to this request MUST NOT include a requirement.

7.2.6. Request Capabilities

Any node MAY request the capabilities of another node. The capabilities include all
information necessary to create a parseable VortexMessage. Any node SHOULD reply to any
encrypted HeaderRequestCapability.

7.2.7. Request Nodes

A node may ask another node for a list of routing node addresses and keys. This request
may be used to bootstrap a new node and to add routing nodes increasing the
anonymization of a node. The receiving node of such a request SHOULD reply with a
requirement (e.g., RequirementPuzzleRequired).

A node SHOULD reply to a HeaderRequest request (see Appendix A) of a valid ephemeral
identity. The reply MUST include a requirement, an error message or a "No Error" status
message.

7.2.8. Request Identity Replace

This request allows a receiving node to replace an identity with the identity provided in the
message. This request is required if an adversary managed to deny the usage of a node
(e.qg., by deleting the corresponding transport account). Any sending node may recover
from such an attack by sending a validly authenticated message to another identity
providing the new transport and key details.

A node SHOULD reply to a such a request of a valid known identity. The reply MUST include
an error message or a "No Error" status message.

7.3. Special Blocks

Special blocks are payload messages. They reflect messages from one node to another and
are not visible to the user. A special block starts with the character sequence "\special' (or
5Ch 73h 70h 65h 63h 69h 61h 6Ch) followed by a DER encoded special block
(SpecialBlock). Any non-special message decoding to ID 0 in a workspace starting with this
character sequence MUST escape all backslashes within the payload chunk with an
additional backslash.

7.3.1. Error Block

An error block may be sent as a reply where specified as a payload. The error block is
embedded in a special block and sent with any provided reply block. Error messages
SHOULD contain the serial number of the offending header block and MAY contain a human-
readable text providing additional messages about the error.

7.3.2. Requirement Block

If a node is receiving a requirements block, it MUST assume that the request block has been
accepted, has not been processed yet, and will be processed if the contained requirement
is met. A node MUST process a request as soon as the requirement is fulfilled. A node MUST
resend the request as soon as the requirement is met.

Gwerder Expires 28 August 2019 Page 20

Internet-Draft MessageVortex Protocol February 2019

A node MAY reject a request, accept a request without a requirement, accept a request
upon payment (RequirementPaymentRequired), or accept a request upon solving a proof of
work puzzle (RequirementPuzzleRequired).

7.3.2.1. Puzzle Requirement

If a node requests a puzzle, it MUST send a RequirementPuzzleRequired block. The puzzle
requirement is solved, if the node receiving the puzzle is replying with a header block
containing the puzzle block and the hash of the encoded block starts with the bit sequence
mentioned in the puzzle within the period specified in the field 'valid'.

To solve a puzzle posed by a node a Vortex Message needs to be sent to the requesting
node. This Vortex Message MUST contain a header block which includes the puzzle block
and MUST have a MAC fingerprint starting with the bit sequence as specified in the
challenge. A node calculates the MAC from the unencrypted DER encoded HeaderBlock with
the algorithm specified by the node. To meet this requirement, a node adds a proofOfWork
field to the HeaderBlock.

7.3.2.2. Payment Requirement

If a node requests a payment, it MUST send a RequirementPaymentRequired block. As soon
as the requested fee is paid and confirmed, the requesting node MUST send a "No Error"
status message. The usage period 'valid' describes the period in which the payment may be
carried out. A node MUST accept the payment if carried out within the 'valid' period but
confirmed later. A node SHOULD return all unsolicited payments to the sending address.

7.4. Routing Operations

Routing operations are contained in a routing block and processed either on arrival on a
message or when a compiling new message. All Operations are reversible. No Operation is
available for generating decoy traffic. For decoy traffic, either encryption of an unpadded
block may be used, or the addRedundancy operation.

All payload chunk blocks inherit the validity time from the message routing combos (arrival
time + max(maxProcessTime)).

When applying an operation to a source block, the resulting target block inherits the expiry
of the of the source block. When having multiple different expiry times, the expiry the
furthest in the future will be applied to the target block. If the operation fails, the target
expiry remains unchanged.

7.4.1. Mapping Operation
A mapping operation is a straightforward operation mainly used in inOperations of a routing
block to map the routing block specific blocks to a permanent workspace.

7.4.2. Split and Merge Operations

The split and merge operations allow splitting and recombining message chunks. A node
MUST adhere to these constraints:

e The operation must be applied at an absolute (measuring in bytes) or relative
(measured as a float value in the range 0>value>100) position.

 All calculations must be done according to IEEE 754 [IEEE754] and in 64 Bit precision.

Gwerder Expires 28 August 2019 Page 21

Internet-Draft MessageVortex Protocol February 2019

e If a relative value is a non-integer result, a floor operation (cutting off all non-integer
parts) determines the number of bytes.

* If an absolute value is negative, the size reflected applies to the number of bytes
counted from the end of the message chunk.

* If an absolute value is bigger than the number of bytes in a block, all bytes are mapped
to the respective target block, and the other target block becomes a zero byte sized
block.

An operation MUST fail if relative values are equal to, or below zero. An operation MUST fail
if a relative value is equal to or above 100. All floating point operations must be carried out
according to [IEEE754] and in 64-bit precision.

7.4.3. Encrypt and Decrypt Operations

Encryption and decryption are executed according to the standards mentioned before. An
encryption operation encrypts a block symmetrically and places the result in the target
block. The parameters MUST contain required parameters such as IV, padding, or cipher
modes. An encryption operation without a valid parameter set MUST fail.

7.4.4. Add and Remove Redundancy Operations

The addRedundancy and removeRedundancy operations are the core operations of the
protocol. They may be used to split messages and distribute message content across
multiple routing nodes. The operation is split into three steps.

1. Pad the input block to a multiple of the key block size in the resulting output blocks.
2. Apply a Vandermonde matrix with the given sizes.
3. Encrypt each resulting block with a separate key.

The following sections describe the order of the operations in an addRedundancy operation.
For a removeRedundancy operation invert the functions and order.

7.4.4.1. Padding Operation

A processing node calculates the final length of all output blocks including redundancy. This
is done by L=roof((<input block size in bytes>+4)/<encryption block size in
bytes>)*<block size in bytes>. The block is prepended with a 32-bit uint length indicator in
bytes (little-endian). This length indicator i is calculated by i=<input block size in
bytes>*randominteger()*L. The rest of the input block up to length L is padded with random
data. A routing block builder SHOULD specify a PRNG and a seed to be used for this
padding. If GF(16) is applied, all numbers are treated as little-endian representations. Only
GF(8) and GF(16) are allowed fields.

For padding removal, first, the padding i at the start is removed as a little-endian integer.
Then, the length of the output block is calculated by applying <output block size in
bytes>=i mod <input block size in bytes>

This padding guarantees that each resulting block matches the block size of the
subsequent encryption operation and does not require any further padding.

Gwerder Expires 28 August 2019 Page 22

Internet-Draft MessageVortex Protocol February 2019

7.4.4.2. Apply Matrix

Next, the input block is organized in a data matrix D of dimensions inrows,incols where
incols=(<number of data blocks>-<number of redundancy blocks>) and inrows=L/
(<number of data blocks>-<number of redundancy blocks>). The input block data is
distributed in this matrix first across, then down.

Next, we multiply the data matrix D by a Vandermonde matrix V. The V matrix has the
number of rows equal to the incols calculated, and columns are equal to the <number of
data blocks>. The content of the matrix is formed by v(i,j)=pow(i,j), whereas i reflects the
row number starting at 0, and j reflects the column number starting at 0. Please note that
calculations noted here have to be carried out in the GF noted in the respective operation
to be successful. The operation results in matrix A.

7.4.4.3. Encrypt Target Block

Each row vector of A is a new data block which is then encrypted with the corresponding
encryption key noted in keys of the addRedundancyOperation. If there are not enough keys
available, the keys used for encryption are reused from the beginning after the last key has
been used. A routing block builder SHOULD provide enough keys so that all target blocks
may be encrypted with a unique key. All encryptions SHOULD NOT use padding.

7.5. Processing of Vortex Messages

The accounting layer triggers processing according to information contained in a routing
block in the workspace. All operations MUST be executed in the sequence provided in the
routing block. Any failing operation must leave the result block unmodified.

All workspace blocks resulting in IDs 1 to maxPayloadBlock are then added to the message
and passed to the blending layer with appropriate instructions.

8. Accounting

8.1. Accounting Operations

The accounting layer has two major kinds of operations:

* Time-based operations (cleanup jobs and initiation of routing)

¢ Routing triggered operations (updating quotas, authorizing operations, and pickup of
incoming messages)

Implementations MUST provide sufficient locking mechanisms to guarantee the integrity of
accounting information and workspace at any time.

8.1.1. Time-Based Garbage Collection

The accounting layer SHOULD keep a list of expiry times. As soon as an entry (e.qg., payload
block, or identity) expires, the respective structure should be removed from the workspace.
An implementation MAY choose to remove expired items periodically or when encountering
them during normal operation.

Gwerder Expires 28 August 2019 Page 23

Internet-Draft MessageVortex Protocol February 2019

8.1.2. Time-Based Routing Initiation

The accounting layer MAY keep a list of any time a routing block is activated. For improved
privacy, the accounting layer should use a slotted model where, whenever possible,
multiple routing blocks are handled in the same period of time, and the requests to the
blending layers are mixed between the transactions.

8.1.3. Routing Based Quota Updates

A node MUST update quotas on the respective operations. It MUST decrease message quota
before processing routing blocks in the workspace. A node MUST decrease the message
quota after the processing of any header requests.

8.1.4. Routing Based Authorization

The transfer quota MUST be checked and decreased by the number of data bytes in the
payload chunks after an outgoing message is processed and fully assembled. The message
quota MUST be decreased by one on each routing block triggering the assembly of an
outgoing message.

8.1.5. Ephemeral Identity Creation

Any packet may request the creation of an ephemeral identity. A node SHOULD NOT accept
such a request without a costly requirement. The request includes a lifetime of the
ephemeral identity. The costs for creating the ephemeral identity SHOULD raise if a longer
lifetime is requested.

9. Acknowledgments

Thanks go to my family which did support me with patience and countless hours and to
Mark Zeman for his feedback challenging my thoughts and peace.

10. IANA Considerations

This memo includes no request to IANA.

Additional encryption algorithms, paddings, modes, blending layers, or puzzles MUST be
added by writing an extension to this or a subsequent RFC. For testing purposes, IDs above
1,000,000 should be used.

11. Security Considerations

The MessageVortex protocol may be understood more as a toolset than a fixed product.
Depending on the usage of the toolset anonymity and security are affected. For a detailed
analysis see [MVAnalysis].

The primary goals for security within this protocol did rely on the following focus areas:

e Confidentiality
* Integrity
* Availability

Gwerder Expires 28 August 2019 Page 24

Internet-Draft MessageVortex Protocol February 2019

* Anonymity
o 3rd party anonymity
o sender anonymity
° receiver anonymity

All these factors are affected by the usage of the protocol. The following sections provide a
list of factors affecting the primary goals.

The Vortex protocol does not rely on any encryption on the transport layer. Vortex
messages are already encrypted. Confidentiality is not affected by the protection
mechanisms of the transport layer.

If a transport layer supports encryption, a Vortex node SHOULD use it to improve the
privacy of the message.

Anonymity is affected by the inner workings of the blending layer in many ways. A Vortex
message cannot be read by anyone except the peer nodes and the routing block builder,
but the presence of a vortex node message may be detected. This may be done either by
detecting the typical high entropy of an encrypted file, broken structures of a carrier file, a
meaningless content of a carrier file, or the contextless communication of the transport
layer with its peer partner. A blending layer SHOULD minimize the possibility of easy
detection by minimizing these effects.

A blending layer SHOULD use carrier files with high compression or encryption. Carrier files
SHOULD NOT have inner structures so that the payload is comparable to valid content. To
achieve undetectability by a human reviewer, a routing block builder should use F5
blending instead of PLAIN blending. This, however, increases the protocol overhead roughly
by a tenfold.

The two layers 'routing' and 'accounting' have the deepest insight into a Vortex message's
inner working. They know the immediate peer sender and the peer recipients of all payload
chunks. As decoy traffic is generated by combining chunks and applying redundancy
calculations upon them, a node can never know whether a malfunction (e.g., when doing a
recovery calculation) was intended or not. Therefore a node is unable to tell a failed
transaction apart from a terminated transaction. It furthermore cannot tell content apart
from decoy traffic.

A routing block builder SHOULD follow the following rules in order not to compromise a
Vortex message's anonymity:

* All operations applied SHOULD be credibly involved in a message transfer.

e There should always be a sufficient subset of the result of an addRedundancy operation
sent to peers to allow recovery of the data built.

* The anonymity set of a message should be sufficiently large to avoid legal prosecution
of all jurisdictional entities involved. It has to be large enough to do so even if a certain
amount of the anonymity set cooperates with an adversary.

e Encryption and decryption SHOULD follow whenever possible normal usage. Avoid
encrypting a block on a node with one key and decrypting it with a different key on the
same or an adjacent node.

 Traffic peaks SHOULD be uniformly distributed within the whole anonymity set.

e A routing block SHOULD be used for a limited number of messages. If used as a
message block for the node itself it should be used only once. A block builder SHOULD

Gwerder Expires 28 August 2019 Page 25

Internet-Draft MessageVortex Protocol February 2019

use the HeaderRequestReplaceldentity block to update reply routing blocks on a regular
base. Implementers should always keep in mind that the same routing block is
identifiable as such by its structure.

An active adversary cannot use blocks from other routing block builders for his purposes.
He may falsify the result by injecting wrong message chunks or by not sending a message.
Such message disruptions may be detected by intentionally routing some information to
the routing block builders' node. If the Vortex message does not carry the information
expected the node may safely assume that one of the involved nodes is misbehaving. A
block building node MAY calculate reputation for involved nodes over time. A block building
node MAY build redundancy paths into a routing block to withstand such malicious nodes.

Receiver anonymity is in danger if the handling of message header and content is not done
with care. An attacker might send a bugged message (e.g., with a DKIM or DMARC header)
to deanonymize a recipient. Great care has to be taken when handling any other than local
references when processing, verifying, or rendering a message.

12. References

12.1. Normative References

[CCITT.X208.1988] International Telephone and Telegraph Consultative Committee,
"Specification of Abstract Syntax Notation One (ASN.1)", CCITT
Recommendation X.208, November 1998.

[CCITT.X680.2002] International Telephone and Telegraph Consultative Committee,
"Abstract Syntax Notation One (ASN.1): Specification of basic notation",
November 2002.

[EAX] Bellare, M., Rogaway, P., and D. Wagner, "The EAX mode of operation”,
2011.

[F5] Westfeld, A., "F5 - A Steganographic Algorithm - High Capacity Despite
Better Steganalysis", 24 October 2001.

[FIPS-AES] Federal Information Processing Standard (FIPS), "Specification for the
ADVANCED ENCRYPTION STANDARD (AES)", November 2011.

[IEEE754] IEEE, "754-2008 - IEEE Standard for Floating-Point Arithmetic"”, 29 August
2008.

[ISO-10118-3] International Organization for Standardization, "ISO/IEC 10118-3:2004 --
Information technology -- Security techniques -- Hash-functions -- Part 3:
Dedicated hash-functions", March 2004.

[MODES] National Institute for Standards and Technology (NIST), "Recommendation
for Block Cipher Modes of Operation: Methods and Techniques", December
2001.

[RFC1423] Balenson, D., "Privacy Enhancement for Internet Electronic Mail: Part Il
Algorithms, Modes, and Identifiers", RFC 1423, DOI 10.17487/RFC1423,
February 1993, <https://www.rfc-editor.org/info/rfc1423>.

Gwerder Expires 28 August 2019 Page 26

https://www.rfc-editor.org/info/rfc1423

Internet-Draft

[RFC2119]

[RFC3610]

[RFC3657]

[RFC36861]

[RFC5234]

[RFC5288]

[RFC5958]

[RFC7253]

[RFC8017]

[SEC1]
[TWOFISH]

[XEP-0231]

MessageVortex Protocol February 2019

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels",
BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
editor.org/info/rfc2119>.

Whiting, D., Housley, R., and N. Ferguson, "Counter with CBC-MAC (CCM)",
RFC 3610, DOI 10.17487/RFC3610, September 2003, <https://www.rfc-
editor.org/info/rfc3610>.

Moriai, S. and A. Kato, "Use of the Camellia Encryption Algorithm in
Cryptographic Message Syntax (CMS)", RFC 3657, DOI 10.17487/RFC3657,
January 2004, <https://www.rfc-editor.org/info/rfc3657>.

Housley, R., "Using Advanced Encryption Standard (AES) Counter Mode With
IPsec Encapsulating Security Payload (ESP)", RFC 3686, DOI 10.17487/
RFC3686, January 2004, <https://www.rfc-editor.org/info/rfc3686>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications:
ABNF", STD 68, RFC 5234, DOI 10.17487/RFC5234, January 2008, <https://
www.rfc-editor.org/info/rfc5234>.

Salowey, J., Choudhury, A., and D. McGrew, "AES Galois Counter Mode
(GCM) Cipher Suites for TLS", RFC 5288, DOI 10.17487/RFC5288, August
2008, <https://www.rfc-editor.org/info/rfc5288>.

Turner, S., "Asymmetric Key Packages", RFC 5958, DOI 10.17487/RFC5958,
August 2010, <https://www.rfc-editor.org/info/rfc5958>.

Krovetz, T. and P. Rogaway, "The OCB Authenticated-Encryption Algorithm",
RFC 7253, DOI 10.17487/RFC7253, May 2014, <https://www.rfc-editor.org/
info/rfc7253>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch, "PKCS #1: RSA
Cryptography Specifications Version 2.2", RFC 8017, DOI 10.17487/
RFC8017, November 2016, <https://www.rfc-editor.org/info/rfc8017>.

Certicom Research, "SEC 1: Elliptic Curve Cryptography", 21 May 2009.

Schneier, B., "The Twofish Encryptions Algorithm: A 128-Bit Block Cipher,
1st Edition", March 1999.

Peter, S.A. and P. Simerda, "XEP-0231: Bits of Binary", 3 September 2008,
<https://xmpp.org/extensions/xep-0231.html>.

12.2. Informative References

[DeadParrot] Houmansadr, A., Burbaker, C., and V. Shmatikov, "The Parrot is Dead:

[KAnon]

[MVAnalysis]

Gwerder

Observing Unobservable Network Communications", 2013, <https://
people.cs.umass.edu/~amir/papers/parrot.pdf>.

Ahn, L., Bortz, A., and N.J. Hopper, "k-Anonymous Message Transmission”,
2003.

Gwerder, M., "MessageVortex", 2018, <https://messagevortex.net/devel/
messageVortex.pdf>.

Expires 28 August 2019 Page 27

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3657
https://www.rfc-editor.org/info/rfc3686
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5958
https://www.rfc-editor.org/info/rfc7253
https://www.rfc-editor.org/info/rfc7253
https://www.rfc-editor.org/info/rfc8017
https://xmpp.org/extensions/xep-0231.html
https://people.cs.umass.edu/~amir/papers/parrot.pdf
https://people.cs.umass.edu/~amir/papers/parrot.pdf
https://messagevortex.net/devel/messageVortex.pdf
https://messagevortex.net/devel/messageVortex.pdf

Internet-Draft

[RFC1939]

[RFC2045]

[RFC2595]

[RFC3501]

[RFC5321]

[RFC6120]

MessageVortex Protocol February 2019

Myers, J. and M. Rose, "Post Office Protocol - Version 3", STD 53, RFC 1939,
DOI 10.17487/RFC1939, May 1996, <https://www.rfc-editor.org/info/
rfc1939>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies", RFC 2045, DOI 10.17487/
RFC2045, November 1996, <https://www.rfc-editor.org/info/rfc2045>.

Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595, DOI
10.17487/RFC2595, June 1999, <https://www.rfc-editor.org/info/rfc2595>.

Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1",
RFC 3501, DOI 10.17487/RFC3501, March 2003, <https://www.rfc-
editor.org/info/rfc3501>.

Klensin, J., "Simple Mail Transfer Protocol”, RFC 5321, DOI 10.17487/
RFC5321, October 2008, <https://www.rfc-editor.org/info/rfc5321>.

Saint-Andre, P., "Extensible Messaging and Presence Protocol (XMPP): Core",
RFC 6120, DOI 10.17487/RFC6120, March 2011, <https://www.rfc-
editor.org/info/rfc6120>.

Appendix A. The ASN.1 schema for Vortex messages

The following sections contain the ASN.1 modules specifying the MessageVortex Protocol.

Gwerder

Expires 28 August 2019 Page 28

https://www.rfc-editor.org/info/rfc1939
https://www.rfc-editor.org/info/rfc1939
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2595
https://www.rfc-editor.org/info/rfc3501
https://www.rfc-editor.org/info/rfc3501
https://www.rfc-editor.org/info/rfc5321
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6120

Internet-Draft MessageVortex Protocol February 2019

A.1l. The main VortexMessageBlocks

Gwerder Expires 28 August 2019 Page 29

Internet-Draft MessageVortex Protocol February 2019

MessageVortex-Schema DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS PrefixBlock, InnerMessageBlock, RoutingBlock,
maxWorkspacelD;
IMPORTS SymmetricKey, AsymmetricKey, MacAlgorithmSpec, CipherSpec
FROM MessageVortex-Ciphers
HeaderRequest
FROM MessageVortex-Requests
PayloadOperation, MapBlockOperation
FROM MessageVortex-Operations

UsagePeriod, BlendingSpec
FROM MessageVortex-Helpers;

_kekskskskokokkokokokokkkskokok ok kskokokkkskokokk sk kokokok sk kokokosk sk kokokosk sk skokok sk sk sk okokosk sk sk skokosk sk kkok ok

-- Constant definitions
Skekekskekokskokokskeskokskokoskskoskokskoskoskskok ok koskokskok sk kosk sk kosk sk skosk sk skosk sk kok sk kok sk kok sk kok sk kokskkosk sk kok sk

-- maximum serial number

maxSerial INTEGER ::= 4294967295

-- maximum number of administrative requests

maxNumOfRequests INTEGER ::= 8

-- maximum number of seconds which the message might be delayed
-- in the local queue (starting from startOffset)
maxDurationOfProcessing INTEGER ::= 86400

-- maximum id of an operation

minWorkspacelD INTEGER ::= 32768

-- maximum number of routing blocks in a message
maxRoutingBlks INTEGER ::= 127

-- maximum number a block may be replayed
maxNumOfReplays INTEGER ::= 127

-- maximum number of payload chunks in a message
maxPayloadBlks INTEGER ::= 127

-- maximum number of seconds a proof of non revocation may be old
maxTimeCachedProof INTEGER ::= 86400

-- The maximum ID of the workspace

maxWorkspaceld INTEGER ::= 65535

-- The maximum number of assembly instructions per combo
maxAssemblylnstr INTEGER ::= 255

_SReksRkskokokRkkokokkkkokokkkkokokkkkokokk sk kokokk sk kokokok sk kkokosk sk sk kok sk kkkok sk kkkk sk k >k k ok ok

-- Types

__3kskokokokeske sk sk ko skoskosk ok ok ok ok ok ok Sk Sk sk sk sk sk ok sk ok ok sk ke sk sk sk sk sk sk ok ok ok ok sk ke sk sk sk sk sk skosk sk ok ok sk sk sk ke sk skoskok ko ok
Puzzleldentifier ::= OCTET STRING (SIZE(0..32))

ChainSecret ::= OCTET STRING (SIZE (16..64))

_SkekRkskokokRkkokokkkkokokkkkokokkkkokokk sk kokokk sk kokokok sk kkokosk sk sk kokosk sk sk kok sk kkkk sk kkk ok ok

-- Block Definitions
Skekekskekokskeskokskoskok sk kok sk ko ko kok sk kok ko kok sk sk oke sk sk ke sk sk k sk sk ke skok sk sk sk sk skok sk skok sk kok sk kok sk kok sk kok sk
PrefixBlock ::= SEQUENCE {

version [0] INTEGER OPTIONAL,

key [2] SymmetricKey

InnerMessageBlock ::= SEQUENCE {
padding OCTET STRING,
prefix CHOICE {

Gwerder Expires 28 August 2019 Page 30

Internet-Draft MessageVortex Protocol February 2019

plain [11011] PrefixBlock,

-- contains prefix encrypted with receivers
-- public key

encrypted [11012] OCTET STRING

+
header CHOICE {
-- debug/internal use only
plain [11021] HeaderBlock,
-- contains encrypted identity block
encyrpted [11022] OCTET STRING
-- contains signature of Identity [as stored in
-- HeaderBlock; signed unencrypted HeaderBlock without
-- Tag]
identitySignature OCTET STRING,
-- contains routing information (next hop) for the
-- payloads
routing [11001] CHOICE {
plain [11031] RoutingBlock,
-- contains encrypted routing block
encyrpted [11032] OCTET STRING

contains the actual payload
payload SEQUENCE (SIZE (0..maxPayloadBlks))
OF OCTET STRING
}

HeaderBlock ::= SEQUENCE {
-- Public key of the identity representing this
-- transmission
identityKey AsymmetricKey,
-- serial identifying this block
serial INTEGER (0..maxSerial),
-- number of times this block may be replayed
-- (Tuple is identityKey, serial while
-- UsagePeriod of block)

maxReplays INTEGER (0..maxNumOfReplays),
-- subsequent Blocks are not processed before
-- valid time.

-- Host may reject too long retention.
-- Recomended validity support >=1Mt.
valid UsagePeriod,
-- contains the MAC-Algorithm used for signing
signAlgorithm MacAlgorithmSpec,
-- contains administrative requests such as
-- quota requests
requests SEQUENCE

(SIZE (0..maxNumOfRequests))

OF HeaderRequest ,
-- Reply Block for the requests
requestReplyBlock RoutingCombo OPTIONAL,
-- padding and identitifier required to solve
-- the cryptopuzzle
identifier [12201] Puzzleldentifier OPTIONAL,
-- This is for solving crypto puzzles
proofOfWork[12202] OCTET STRING OPTIONAL

Gwerder Expires 28 August 2019 Page 31

Internet-Draft MessageVortex Protocol February 2019

RoutingBlock ::= SEQUENCE {
-- contains the routingCombos
routing [331] SEQUENCE
(SIZE (0..maxRoutingBlks))
OF RoutingCombo,
-- contains the mapping operations to map
-- payloads to the workspace
mappings [332] SEQUENCE
(SIZE (0..maxPayloadBIks))
OF MapBlockOperation,
-- contains a routing block which may be used
-- when sending error messages back to the quota
-- owner this routing block may be cached for
-- future use
replyBlock [332] SEQUENCE {
murb RoutingCombo,
maxReplay INTEGER,
validity UsagePeriod
} OPTIONAL
}

RoutingCombo ::= SEQUENCE {
-- contains the period when the payload should
-- be processed.
-- Router might refuse too long queue retention
-- Recommended support for retention >=1h
minProcessTime INTEGER
(0..maxDurationOfProcessing),
maxProcessTime INTEGER
(0..maxDurationOfProcessing),
-- The message key to encrypt the message
peerKey [401] SEQUENCE
(SIZE (1..maxNumOfReplays))
OF SymmetricKey OPTIONAL,
-- contains the next recipient
recipient [402] BlendingSpec,
-- PrefixBlock encrypted with message key
mPrefix [403] SEQUENCE
(SIZE (1..maxNumOfReplays))
OF OCTET STRING OPTIONAL,
-- PrefixBlock encrypted with sender key
cPrefix [404] OCTET STRING OPTIONAL,
-- HeaderBlock encrypted with sender key
header [405] OCTET STRING OPTIONAL,
-- RoutingBlock encrypted with sender key
routing [406] OCTET STRING OPTIONAL,
-- contains information for building messages
-- (when used as MURB)
-- ID 0 denotes original/local message
-- ID 1-maxPayloadBlks denotes target message
-- ID 32767 denotes a solicited reply block
-- 32768-maxWorkspaceld shared workspace for all
-- blocks of this identity)
assembly [407] SEQUENCE
(SIZE (0..maxAssemblylnstr))
OF PayloadOperation,
-- optional for storage of the arrival time
validity [408] UsagePeriod OPTIONAL

Gwerder Expires 28 August 2019 Page 32

Internet-Draft MessageVortex Protocol February 2019

END

Gwerder Expires 28 August 2019 Page 33

Internet-Draft MessageVortex Protocol February 2019

A.2. The VortexMessage Ciphers Structures

Gwerder Expires 28 August 2019 Page 34

Internet-Draft MessageVortex Protocol February 2019

MessageVortex-Ciphers DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS SymmetricKey, AsymmetricKey, MacAlgorithmSpec,
MacAlgorithm, CipherSpec, PRNGType;

CipherSpec ::= SEQUENCE {
asymmetric [16001] AsymAlgSpec OPTIONAL,
symmetric [16002] SymAIlgSpec OPTIONAL,
mac [16003] MacAlgorithmSpec OPTIONAL,
cipherUsage [16004] CipherUsage

CipherUsage ::= ENUMERATED {
sign (200),
encrypt (210)

SymAlgSpec ::= SEQUENCE {
algorithm [16101]SymmetricAlgorithm,
-- if ommited: pkcs7
padding [16102]CipherPadding OPTIONAL,
-- if ommited: cbc
mode [16103]CipherMode OPTIONAL,
parameter [16104]AlgParameters OPTIONAL
}

AsymAlgSpec ::= SEQUENCE {

algorithm AsymmetricAlgorithm,

-- if ommited: pkcsl

padding [16102]CipherPadding OPTIONAL,
parameter AlgParameters OPTIONAL

¥

SymmetricKey ::= SEQUENCE {
keyType SymmetricAlgorithm,
parameter AlgParameters,
key OCTET STRING (SIZE(16..512))
}

AsymmetricKey ::= SEQUENCE {
keyType AsymmetricAlgorithm,
-- private key encoded as PKCS#8/PrivateKeylnfo
publickey [2] OCTET STRING,
-- private key encoded as
-- X.509/SubjectPublicKeylnfo
privateKey [3] OCTET STRING OPTIONAL

SymmetricAlgorithm ::= ENUMERATED {
aesl28 (1000), --required
aesl92 (1001), -- optional support
aes256 (1002), --required
camellial28 (1100), -- required
camellial92 (1101), -- optional support
camellia256 (1102), -- required
twofish128 (1200), -- optional support
twofish192 (1201), -- optional support

Gwerder Expires 28 August 2019 Page 35

Internet-Draft MessageVortex Protocol February 2019

twofish256 (1202) -- optional support

}
AsymmetricAlgorithm ::= ENUMERATED {
rsa (2000),
dsa (2100),
ec (2200),
ntru (2300)
}

ECCurveType ::= ENUMERATED{
secp384rl (2500),
sect409k1l (2501),
secp521rl (2502)

}
AlgParameters ::= SEQUENCE {
keySize [9000] INTEGER (0..65535) OPTIONAL,
curveType [9001] ECCurveType OPTIONAL,
iv [9002] OCTET STRING OPTIONAL,
nonce [9003] OCTET STRING OPTIONAL,
mode [9004] CipherMode OPTIONAL,
padding [9005] CipherPadding OPTIONAL,
[9010] INTEGER OPTIONAL,

=)

p [9011] INTEGER OPTIONAL,
q [9012] INTEGER OPTIONAL,
k [9013] INTEGER OPTIONAL,
t [9014] INTEGER OPTIONAL

}

CipherMode ::= ENUMERATED {
cbc (10000), -- required
ctr (10001), -- required
ccm (10002), -- optional support
gcm (10003), -- optional support
ocb (10004), -- optional support
ofb (10005), -- optional support
xts (10006), -- optional support
none (10100) -- required

}

CipherPadding ::= ENUMERATED {
none (10200), -- required
pkcsl (10201), -- required

rsaesOaep (10202), -- optional support
oaepSha256Mgfl (10203), -- optional support
pkcs7 (10301), -- required
ap (10221) -- required

}

MacAlgorithm ::= ENUMERATED {
sha3-256 (3000), -- required
sha3-384 (3001), -- optional support
sha3-512 (3002), -- required
ripemd160 (3100), -- optional support
ripemd256 (3101), -- required
ripemd320 (3102) -- optional support

}

MacAlgorithmSpec ::= SEQUENCE {

Gwerder Expires 28 August 2019 Page 36

Internet-Draft MessageVortex Protocol February 2019

algorithm MacAlgorithm,
parameter AlgParameters

}

PRNGAIlgorithmSpec ::= SEQUENCE {
type PRNGType,
seed OCTET STRING

}

PRNGType ::= ENUMERATED {
mrg32k3a (10300), -- required
blumMicali (10301) -- required

}
END

Gwerder Expires 28 August 2019 Page 37

Internet-Draft MessageVortex Protocol February 2019

A.3. The VortexMessage Replies Structures

Gwerder Expires 28 August 2019 Page 38

Internet-Draft MessageVortex Protocol February 2019

MessageVortex-Replies DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS SpecialBlock;
IMPORTS BlendingSpec, NodeSpec
FROM MessageVortex-Helpers
RequirementBlock
FROM MessageVortex-Requirements
CipherSpec, PRNGType, MacAlgorithm
FROM MessageVortex-Ciphers
maxGFSize
FROM MessageVortex-Operations
maxNumberOfReplays
FROM MessageVortex-Schema;

SpecialBlock ::= CHOICE {
capabilities [1] ReplyCapability,
requirement [2] SEQUENCE (SIZE (1..127))
OF RequirementBlock,

quota [4] ReplyCurrentQuota,
nodes [5] ReplyNodes,
status [99] StatusBlock
}
StatusBlock ::= SEQUENCE {
code StatusCode
}

StatusCode ::= ENUMERATED {

-- System messages

ok (2000),
quotaStatus (2101),
puzzleRequired (2201),

-- protocol usage failures
transferQuotaExceeded (3001),
messageQuotaExceeded (3002),
requestedQuotaOutOfBand (3003),

identityUnknown (3101),
messageChunkMissing (3201),
messagelifeExpired (3202),
puzzleUnknown (3301),

-- capability errors
macAlgorithmUnknown (3801),
symmetricAlgorithmUnknown (3802),
asymmetricAlgorithmUnknown (3803),
prngAlgorithmUnknown (3804),
missingParameters (3820),
badParameters (3821),

-- Mayor host specific errors
hostError (5001)
}

ReplyNodes ::= SEQUENCE {
node SEQUENCE (SIZE (1..5))

Gwerder Expires 28 August 2019 Page 39

Internet-Draft MessageVortex Protocol February 2019

OF NodeSpec
}

ReplyCapability ::= SEQUENCE {
-- supported ciphers
cipher SEQUENCE (SIZE (2..256))
OF CipherSpec,
-- supported mac algorithms
mac SEQUENCE (SIZE (2..256))
OF MacAlgorithm,
-- supported PRNGs
prng SEQUENCE (SIZE (2..256))
OF PRNGType,
-- maximum number of bytes to be transferred
-- (outgoing bytes in vortex message without blending)
maxTransferQuota INTEGER (0..4294967295),
-- maximum number of messages to process for this identity
maxMessageQuota INTEGER (0..4294967295),
-- maximum simultaneously tracked header serials
maxHeaderSerials INTEGER (0..4294967295),
-- maximum simultaneously valid build operations in workspace
maxBuildOps INTEGER (0..4294967295),
-- maximum payload size
maxPayloadSize INTEGER (0..4294967295),
-- maximum active payloads (without intermediate products)
maxActivePayloads INTEGER (0..4294967295),
-- maximum header lifespan in seconds
maxHeaderLive INTEGER (0..4294967295),
-- maximum number of replays accepted,
maxReplay INTEGER (0..maxNumberOfReplays),
-- Supported inbound blending
supportedBlendingln SEQUENCE OF BlendingSpec,
-- Supported outbound blending
supportedBlendingOut SEQUENCE OF BlendingSpec,
-- supported galoise fields
supportedGFSize SEQUENCE OF INTEGER (1..maxGF)
}

ReplyCurrentQuota ::= SEQUENCE {
messages INTEGER (0..4294967295),
size INTEGER (0..4294967295)

}

ReplyUpgrade ::= SEQUENCE {
-- The offered version
version [0] OCTET STRING,
-- The offered identitfier
identifier [1] OCTET STRING,
-- The archive or blob containing the software
blob [2] OCTET STRING OPTIONAL

END

Gwerder Expires 28 August 2019 Page 40

Internet-Draft MessageVortex Protocol

A.4. The VortexMessage Requirements Structures

MessageVortex-Requirements DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS RequirementBlock;
IMPORTS MacAlgorithmSpec
FROM MessageVortex-Ciphers
UsagePeriod, UsagePeriod
FROM MessageVortex-Helpers;

RequirementBlock ::= CHOICE {
puzzle [1] RequirementPuzzleRequired,
payment [2] RequirementPaymentRequired

RequirementPuzzleRequired ::= SEQUENCE {
-- bit sequence at beginning of hash from
-- the encrypted identity block
challenge BIT STRING,

mac MacAlgorithmSpec,

valid UsagePeriod,

identifier INTEGER (0..4294967295)
}

RequirementPaymentRequired ::= SEQUENCE {
account OCTET STRING,
ammount REAL,
currency Currency

¥

Currency ::= ENUMERATED {
btc (8001),
eth (8002),
zec (8003)

}

END
Gwerder Expires 28 August 2019

February 2019

Page 41

Internet-Draft MessageVortex Protocol February 2019

A.5. The VortexMessage Helpers Structures

Gwerder Expires 28 August 2019 Page 42

Internet-Draft MessageVortex Protocol February 2019

MessageVortex-Helpers DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS UsagePeriod, BlendingSpec, NodeSpec;
IMPORTS AsymmetricKey, SymmetricKey
FROM MessageVortex-Ciphers;

-- the maximum number of embeddable parameters
maxNumberOfParameter INTEGER ::= 127

UsagePeriod ::= CHOICE {
absolute [2] AbsoluteUsagePeriod,
relative [3] RelativeUsagePeriod

}

AbsoluteUsagePeriod ::= SEQUENCE {
notBefore [0] GeneralizedTime OPTIONAL,
notAfter [1] GeneralizedTime OPTIONAL
}

RelativeUsagePeriod ::= SEQUENCE {
notBefore [0] INTEGER OPTIONAL,
notAfter [1] INTEGER OPTIONAL

}

-- contains a node spec of a routing point
-- At the moment either smtp:<email> or xmpp:<jabber>
BlendingSpec ::= SEQUENCE {
target [1] NodeSpec,
blendingType [2] IA5String,
parameter [3] SEQUENCE
(SIZE (0..maxNumberOfParameter))
OF BlendingParameter

}

BlendingParameter ::= CHOICE {
offset [1] INTEGER,
symmetricKkey [2] SymmetricKey,
asymmetrickey [3] AsymmetricKey,
passphrase [4] OCTET STRING

NodeSpec ::= SEQUENCE {
transportProtocol [1] Protocol,
recipientAddress [2] IA5String,
recipientkey [3] AsymmetricKey OPTIONAL

Protocol ::= ENUMERATED {
smtp (100),

xmmp (110)

}

END

Gwerder Expires 28 August 2019 Page 43

Internet-Draft MessageVortex Protocol February 2019

A.6. The VortexMessage Additional Structures

Gwerder Expires 28 August 2019 Page 44

Internet-Draft MessageVortex Protocol February 2019

-- States reflected:

-- Tuple()=Val()[vallidity; allowed operations]

-- {Store}

-- - Tuple(identity)=Val(messageQuota,transferQuota,
-- sequence of Routingblocks for Error Message

-- Routing) [validity; Requested at creation; may

-- be extended upon request] {identityStore}

-- - Tuple(ldentity,Serial)=maxReplays ['valid' from

-- ldentity Block; from First Identity Block; may

-- only be reduced] {ldentityReplayStore}

MessageVortex-NonProtocolBlocks DEFINITIONS
EXPLICIT TAGS ::=
BEGIN
IMPORTS PrefixBlock, InnerMessageBlock,
RoutingBlock,
maxWorkspacelD
FROM MessageVortex-Schema
UsagePeriod, NodeSpec, BlendingSpec
FROM MessageVortex-Helpers
AsymmetricKey
FROM MessageVortex-Ciphers
RequirementBlock
FROM MessageVortex-Requirements;

-- maximum size of transfer quota in bytes of an

-- identity

maxTransferQuota INTEGER ::= 4294967295

-- maximum # of messages quota in messages of an
-- identity

maxMessageQuota INTEGER ::= 4294967295

-- do not use these blocks for protocol encoding
-- (internal only)
VortexMessage ::= SEQUENCE {

prefix CHOICE {

plain [10011] PrefixBlock,
-- contains prefix encrypted with receivers
-- public key

encrypted [10012] OCTET STRING

innerMessage CHOICE {
plain [10021] InnerMessageBlock,
-- contains inner message encrypted with
-- Symmetric key from prefix
encrypted [10022] OCTET STRING

}
}
MemoryPayloadChunk ::= SEQUENCE {
id INTEGER (0..maxWorkspacelD),

payload [100] OCTET STRING,
validity UsagePeriod
}

IdentityStore ::= SEQUENCE {
identities SEQUENCE (SIZE (0..4294967295))

Gwerder Expires 28 August 2019 Page 45

Internet-Draft MessageVortex Protocol

OF IdentityStoreBlock
}

IdentityStoreBlock ::= SEQUENCE {

valid UsagePeriod,

messageQuota INTEGER (0..maxMessageQuota),

transferQuota INTEGER (0..maxTransferQuota),

-- if omitted this is a node identity

identity [1001] AsymmetricKey OPTIONAL,

-- if ommited own identity key

nodeAddress [1002] NodeSpec OPTIONAL,

-- Contains the identity of the owning node;

-- May be ommited if local node

nodeKey [1003] SEQUENCE OF AsymmetricKey

OPTIONAL,
routingBlocks [1004] SEQUENCE OF RoutingBlock
OPTIONAL,

replayStore [1005] IdentityReplayStore,

requirement [1006] RequirementBlock OPTIONAL
}

IdentityReplayStore ::= SEQUENCE {
replays SEQUENCE (SIZE (0..4294967295))
OF IdentityReplayBlock

}

IdentityReplayBlock ::= SEQUENCE {
identity AsymmetricKey,
valid UsagePeriod,

replaysRemaining INTEGER (0..4294967295)

END

Author's Address

Martin Gwerder

University of Applied Sciences of Northwestern Switzerland
Bahnhofstrasse 5

CH-5210 Windisch

Switzerland

Phone: +41 56 202 76 81

Email: rfc@messagevortex.net

Gwerder Expires 28 August 2019

February 2019

Page 46

tel:+41%2056%20202%2076%2081
mailto:rfc@messagevortex.net

	MessageVortex Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Protocol Specification
	1.3. Number Specification

	2. Entities Overview
	2.1. Node
	2.1.1. Blocks
	2.1.2. NodeSpec
	2.1.2.1. NodeSpec for SMTP nodes
	2.1.2.2. NodeSpec for XMPP nodes

	2.2. Peer Partner
	2.3. Encryption keys
	2.3.1. Identity Keys
	2.3.2. Peer Key
	2.3.3. Sender Key

	2.4. Vortex Message
	2.5. Message
	2.6. Key and MAC specifications and usages
	2.6.1. Asymmetric Keys
	2.6.2. Symmetric Keys

	2.7. Transport Address
	2.8. Identity
	2.8.1. Peer Identity
	2.8.2. Ephemeral Identity
	2.8.3. Official Identity

	2.9. Workspace
	2.10. Multi-Use Reply Blocks

	3. Layer Overview
	3.1. Transport Layer
	3.2. Blending Layer
	3.3. Routing Layer
	3.4. Accounting Layer

	4. Vortex Message
	4.1. Overview
	4.2. Message Prefix Block (MPREFIX)
	4.3. Inner Message Block
	4.3.1. Control Prefix Block
	4.3.2. Control Blocks
	4.3.2.1. Header Block
	4.3.2.2. Routing Block

	4.3.3. Payload Block

	5. General notes
	5.1. Supported Symmetric Ciphers
	5.2. Supported Asymmetric Ciphers
	5.3. Supported MACs
	5.4. Supported Paddings
	5.5. Supported Modes

	6. Blending
	6.1. Blending in Attachments
	6.1.1. PLAIN embedding into attachments
	6.1.2. F5 embedding into attachments

	6.2. Blending into an SMTP layer
	6.3. Blending into an XMPP layer

	7. Routing
	7.1. Vortex Message Processing
	7.1.1. Processing of incoming Vortex Messages
	7.1.2. Processing of Routing Blocks in Workspace
	7.1.3. Processing of Outgoing MessageVortex Messages

	7.2. Header Requests
	7.2.1. Request New Ephemeral Identity
	7.2.2. Request Message Quota
	7.2.3. Request Increase of Message Quota
	7.2.4. Request Transfer Quota
	7.2.5. Query Quota
	7.2.6. Request Capabilities
	7.2.7. Request Nodes
	7.2.8. Request Identity Replace

	7.3. Special Blocks
	7.3.1. Error Block
	7.3.2. Requirement Block
	7.3.2.1. Puzzle Requirement
	7.3.2.2. Payment Requirement

	7.4. Routing Operations
	7.4.1. Mapping Operation
	7.4.2. Split and Merge Operations
	7.4.3. Encrypt and Decrypt Operations
	7.4.4. Add and Remove Redundancy Operations
	7.4.4.1. Padding Operation
	7.4.4.2. Apply Matrix
	7.4.4.3. Encrypt Target Block

	7.5. Processing of Vortex Messages

	8. Accounting
	8.1. Accounting Operations
	8.1.1. Time-Based Garbage Collection
	8.1.2. Time-Based Routing Initiation
	8.1.3. Routing Based Quota Updates
	8.1.4. Routing Based Authorization
	8.1.5. Ephemeral Identity Creation

	9. Acknowledgments
	10. IANA Considerations
	11. Security Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. The ASN.1 schema for Vortex messages
	A.1. The main VortexMessageBlocks
	A.2. The VortexMessage Ciphers Structures
	A.3. The VortexMessage Replies Structures
	A.4. The VortexMessage Requirements Structures
	A.5. The VortexMessage Helpers Structures
	A.6. The VortexMessage Additional Structures

	Author's Address

