
MessageVortex Protocol

Abstract

MessageVortex Protocol is a protocol to achieve different degrees of anonymity. It specifies

messages embedded within existing transfer protocols such as SMTP or XMPP to send them

via peer nodes to one or more recipients.

The protocol outperforms other protocols by decoupling transport from the final transmitter

and receiver party. There is no trust put into any infrastructure except for the infrastructure

of the sending and receiving party of a message. The creator of the routing block has full

control over the message flow. Routing nodes gain no non-obvious knowledge about

messages even when collaborating. Third-party anonymity is always achieved.

Furthermore, the protocol allows achieving either sender or receiver anonymity.

Workgroup:

Internet-Draft:

Published:

Intended

Status:

Expires:

Author:

Internet Engineering Task Force

draft-gwerder-messagevortexmain-01

24 February 2019

Experimental

28 August 2019

 M. Gwerder

FHNW

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP

79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note

that other groups may also distribute working documents as Internet-Drafts. The list of

current Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be

updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use

Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 August 2019.

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights

reserved.

Gwerder Expires 28 August 2019 Page 1

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted from this document

must include Revised BSD License text as described in Section 4.e of the Trust Legal

Provisions and are provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Requirements Language

1.2. Protocol Specification

1.3. Number Specification

2. Entities Overview

2.1. Node

2.1.1. Blocks

2.1.2. NodeSpec

2.1.2.1. NodeSpec for SMTP nodes

2.1.2.2. NodeSpec for XMPP nodes

2.2. Peer Partner

2.3. Encryption keys

2.3.1. Identity Keys

2.3.2. Peer Key

2.3.3. Sender Key

2.4. Vortex Message

2.5. Message

2.6. Key and MAC specifications and usages

2.6.1. Asymmetric Keys

2.6.2. Symmetric Keys

2.7. Transport Address

2.8. Identity

2.8.1. Peer Identity

2.8.2. Ephemeral Identity

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 2

https://trustee.ietf.org/license-info

2.8.3. Official Identity

2.9. Workspace

2.10. Multi-Use Reply Blocks

3. Layer Overview

3.1. Transport Layer

3.2. Blending Layer

3.3. Routing Layer

3.4. Accounting Layer

4. Vortex Message

4.1. Overview

4.2. Message Prefix Block (MPREFIX)

4.3. Inner Message Block

4.3.1. Control Prefix Block

4.3.2. Control Blocks

4.3.2.1. Header Block

4.3.2.2. Routing Block

4.3.3. Payload Block

5. General notes

5.1. Supported Symmetric Ciphers

5.2. Supported Asymmetric Ciphers

5.3. Supported MACs

5.4. Supported Paddings

5.5. Supported Modes

6. Blending

6.1. Blending in Attachments

6.1.1. PLAIN embedding into attachments

6.1.2. F5 embedding into attachments

6.2. Blending into an SMTP layer

6.3. Blending into an XMPP layer

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 3

7. Routing

7.1. Vortex Message Processing

7.1.1. Processing of incoming Vortex Messages

7.1.2. Processing of Routing Blocks in Workspace

7.1.3. Processing of Outgoing MessageVortex Messages

7.2. Header Requests

7.2.1. Request New Ephemeral Identity

7.2.2. Request Message Quota

7.2.3. Request Increase of Message Quota

7.2.4. Request Transfer Quota

7.2.5. Query Quota

7.2.6. Request Capabilities

7.2.7. Request Nodes

7.2.8. Request Identity Replace

7.3. Special Blocks

7.3.1. Error Block

7.3.2. Requirement Block

7.3.2.1. Puzzle Requirement

7.3.2.2. Payment Requirement

7.4. Routing Operations

7.4.1. Mapping Operation

7.4.2. Split and Merge Operations

7.4.3. Encrypt and Decrypt Operations

7.4.4. Add and Remove Redundancy Operations

7.4.4.1. Padding Operation

7.4.4.2. Apply Matrix

7.4.4.3. Encrypt Target Block

7.5. Processing of Vortex Messages

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 4

1. Introduction

Anonymization is hard to achieve. Most of the attempts in the past rely on either trust in a

dedicated infrastructure or a specialized networking protocol.

Instead of defining a transport layer, MessageVortex piggybacks on other transport

protocols. A blending layer embeds Vortex messages into ordinary messages of that

transport protocol. A blending layer picks the messages up, applies local operations to it

and resends the new chunks to the next recipients.

8. Accounting

8.1. Accounting Operations

8.1.1. Time-Based Garbage Collection

8.1.2. Time-Based Routing Initiation

8.1.3. Routing Based Quota Updates

8.1.4. Routing Based Authorization

8.1.5. Ephemeral Identity Creation

9. Acknowledgments

10. IANA Considerations

11. Security Considerations

12. References

12.1. Normative References

12.2. Informative References

Appendix A. The ASN.1 schema for Vortex messages

A.1. The main VortexMessageBlocks

A.2. The VortexMessage Ciphers Structures

A.3. The VortexMessage Replies Structures

A.4. The VortexMessage Requirements Structures

A.5. The VortexMessage Helpers Structures

A.6. The VortexMessage Additional Structures

Author's Address

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 5

A processing node learns as little as possible from the message due to the nature of the

operations processed. The onionized structure of the protocol makes it impossible to follow

the trace of a message without having control over the processing node itself.

MessageVortex is a protocol which allows sending and receiving messages by using a

routing block instead of a destination address. The sender has full control over all

parameters of the message flow.

A message is split and reassembled during transmission. Chunks of the message may carry

redundant information to avoid service interruptions of the message transit. Decoy traffic

and message traffic are not differentiable as the nature of the addRedundancy operation

allows each generated part to be a message part or decoy. Any routing node is thus unable

to differentiate between the message and decoy traffic.

Any Receiver knows after processing whether a message is destined for it (it creates a

chunk with ID 1) or other nodes (processing instructions only). Due to the missing keys, no

other node may do this processing.

This RFC starts with the general terminology (see Section 2). Next, a general overview of

the process is given (see Section 3). Lastly, the subsequent sections describe the details of

the protocol.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be

interpreted as described in .

1.2. Protocol Specification

Appendix A specifies all relevant parts of the protocol in ASN.1 (see and

). The blocks are, if not otherwise mentioned, DER encoded.

1.3. Number Specification

All numbers within this document are, if not suffixed, decimal numbers. Numbers suffixed

with a small letter 'h' followed by two hexadecimal digits are octets in hexadecimal writing.

A blank in ASCII (' ') is written as 20h and a capital 'K' in ASCII as 4Bh.

[RFC2119]

[CCITT.X680.2002]

[CCITT.X208.1988]

2. Entities Overview

Within this document, we refer to the entities as defined below.

2.1. Node

We use the term 'node' to describe any system connected to other nodes, and supporting

the MessageVortex Protocol. A 'node address' is typically an email address, an XMPP

address, or any other transport protocol identity supporting the MessageVortex protocol.

Any address SHOULD include a public part of an 'identity key' allowing to transmit

messages safely. One or more addresses MAY belong to the same node.

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 6

2.1.1. Blocks

We use the term 'block' for an ASN.1 sequence in a transmitted message. We embed

messages in the transport protocol. These messages may have any size.

2.1.2. NodeSpec

A nodeSpec block as specified in Appendix A.5 expresses in a unified format an addressable

node. The nodeSpec contains a reference to the routing protocol, the routing address within

this protocol and the keys required for addressing the node. This RFC specifies transport

layers for XMPP and SMTP. Adding transport layers requires to write an extension to this

RFC.

2.1.2.1. NodeSpec for SMTP nodes

An alternative address representation is defined. This address allows a standard email client

to address a vortex node. An alternative representation SHOULD be supported as defined

below as smtpAlternateSpec (specification noted in ABNF as specified in). For

applications with QR code support, the smtpUrl representations SHOULD be used.

This representation does not support quoted local part SMTP addresses.

[RFC5234]

localPart = <local part of address>
domain = <domain part of address>
email = localPart "@" domain
keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>
smtpAlternateSpec = localPart ".." keySpec ".." domain "@localhost"
smtpUrl = "vortexsmtp://" smtpAlternateSpec

2.1.2.2. NodeSpec for XMPP nodes

Typically a node specification is specified with the ASN.1 block NodeSpec. To allow

addressing of a vortex node with an ordinary XMPP client, the alternative representation

SHOULD be supported as defined below as jidAlternateSpec (specification noted in ABNF as

specified in).[RFC5234]

localPart = <local part of address>
domain = <domain part of address>
resourcePart = <resource part of the address>
jid = localPart "@" domain ["/" resourcePart]
keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>;
jidAlternateSpec = localPart ".." keySpec ".."
 domain "@localhost" ["/" resourcePart]
jidUrl = "vortexxmpp://" jidAlternateSpec

2.2. Peer Partner

We use the term 'peer partner' as two or more message sending or receiving entities. One

of these peer partners sends a message, and all other peer partners receive one or more

messages. Peer partners are message specific. Every peer partner always connects directly

to a node.

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 7

2.3. Encryption keys

There are several keys required for a Vortex message. For identities and ephemeral

identities (see below) we use asymmetric keys. For message encryption, we use symmetric

keys.

2.3.1. Identity Keys

Every participant of the network has an asymmetric key. These keys SHOULD be either EC

keys with a minimum length of 384 bits or RSA keys with a minimum length of 2048 bits.

The public key needs to be known by all parties writing to or through that node.

2.3.2. Peer Key

Peer keys are symmetrical keys transmitted with a Vortex message. Peer keys are always

known to the node sending a message, the node receiving the message from the sender,

and to the creator of the routing block.

A peer key is included in the identity block of a Vortex message and the building

instructions for a Vortex message (see RoutingCombo in Appendix A).

2.3.3. Sender Key

The sender key is a symmetrical key protecting the identity and routing block of a Vortex

message. It is encrypted with the receiving peer key and prefixed to the identity block. This

key decouples further identity and processing information from the previous key.

A sender key is known to precisely one peer of a Vortex message and the creator of the

routing block.

2.4. Vortex Message

We use the term 'Vortex message' for a single transmission between two routing layers. A

message adapted to the transport layer by the blending layer is called a 'blended Vortex

message' (see Section 3).

A full vortex message contains the following items:

The peer key (encrypted with the host key of the node; stored in a PrefixBlock) protects

the inner Vortex message (innerMessageBlock).

The small padding guarantees that a replayed routing block with different content does

not look alike.

The sender key (encrypted with the host key of the node) protecting the identity and

routing block.

The identity block (protected by the sender key) contains information about the

ephemeral identity of the sender, replay protection information, header requests

(optional) and a requirement reply (optional).

The routing block (protected by the sender key) containing information on how

subsequent messages are processed, assembled and blended.

The payload block (protected by the peer key) contains payload chunks for processing.

•

•

•

•

•

•

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 8

2.5. Message

A Message is a content to be transmitted from one sender to the recipient. The Sender uses

a routing block to achieve this which is either built by him or provided by the receiver. A

Message may be anonymous. There are however different degrees of anonymity:

If the sender of a message is not known to anyone else except the sender, we refer to

that as 'sender anonymity.'

If the receiver of a message is not known to anyone else except the receiver, we refer

to that as 'receiver anonymity.'

If an attacker is unable to determine content, original sender, and final receiver, we

refer to that as third-party anonymity.

If a sender or a receiver may be determined as "one of a set of <k> entities we refer to

it as k-anonymity (for more about this see).

A message is always MIME encoded as specified in .

•

•

•

•

[KAnon]

[RFC2045]

2.6. Key and MAC specifications and usages

MessageVortex uses a unique encoding for keys. It is designed to be small and flexible

while maintaining a specific base structure.

The following key structures exist:

SymmetricKey

AsymmetricKey

MAC does not need a complete structure containing specs and value. Instead only a

MacAlgorithmSpec is available. The following sections outline the constraints when

specifying parameters for these structures. A node MUST NOT specify any parameter more

than once.

If a crypto mode is specified requiring an IV, a node MUST provide the IV when specifying

the key.

•

•

2.6.1. Asymmetric Keys

Nodes use asymmetric keys for identifying peer nodes (identities) and encrypting

symmetric keys (for later de-/encryption of payload or blocks). All asymmetric keys MUST

contain a key type specifying a strictly normed key. They MUST contain a public part of the

key encoded as X.509 container and a private key as specified in PKCS#8 wherever

possible.

RSA and EC keys must contain a keysize parameter. All asymmetric keys SHOULD contain a

padding parameter. A node SHOULD assume PKCS#1 if no padding is specified.

NTRU specification MUST provide parameters "n", "p", and "q".

2.6.2. Symmetric Keys

Nodes use symmetric keys for encrypting payload and control blocks. These symmetric

keys MUST contain a key type specifying a key. They MUST contain a key in an encoded

form.

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 9

A node MUST provide a keysize parameter if the key (or equivalently block) size is not

standardized or encoded in the name. All symmetric key specification MUST contain a mode

and padding parameter. A node MAY list multiple padding or mode parameters in a

ReplyCapability block to give the recipient a free choice.

2.7. Transport Address

We use the term 'transport address' for the token required to address the next immediate

node on the transport layer. An email transport layer would have SMTP addresses such as

'vortex@example.com' as transport address.

2.8. Identity

2.8.1. Peer Identity

The peer identity may contain the following information of a peer partner:

A transport address (always) and the public key of this identity (given there is no

recipient anonymity)

A routing block. This block may be used to contact the sender (optional). If striving for

recipient anonymity, this block is required.

The private key (only known by the owner of the identity)

•

•

•

2.8.2. Ephemeral Identity

Ephemeral identities are temporary identities created on a single node. These identities

MUST NOT relate to any other identity on any other node. They allow bookkeeping for a

node. Each ephemeral identity has a workspace assigned. Every ephemeral identity may

have the following items assigned:

An asymmetric key pair to represent the identity

A validity time of the identity

•

•

2.8.3. Official Identity

An official identity may have the following items assigned:

Routing blocks to be used to reply to the node.

A list of assigned ephemeral identities on all other nodes and their projected quotas.

A list of known nodes and the respective node identity

•

•

•

2.9. Workspace

Every official or ephemeral identity has a workspace. A workspace consists of the following

elements:

Zero or more routing blocks to be processed

Slots for payload block sequentially numbered. Every slot...

MUST contain a numerical ID identifying the slot

MAY contain a payload content

If a block contains a payload, it MUST contain a validity period.

•

•

◦

◦

◦

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 10

2.10. Multi-Use Reply Blocks

We use the term 'multi-use reply blocks' (MURB) for a special routing block sent to a

receiver of a message or request. A sender may use such a block once or several times to

reply to the sender linked to the ephemeral identity. It is possible to achieve sender

anonymity using these blocks.

3. Layer Overview

The protocol is designed in four layers as shown in Figure 1.

Every participating node MUST implement the layers blending, routing, and accounting.

There MUST be at least one incoming and one outgoing transport layer available to a node.

All blending layers SHOULD connect to respective Transport layers for sending and

receiving packets.

Figure 1: Layer overview

+--+
| Vortex Node |
| +--+ |
| | Accounting | |
| |__| |
| |
| +--+ |
| | Routing | |
| |__| |
| |
| +---------------------------+ +--------------------------------+ |
| | Blending | | Blending | |
| |___________________________| |________________________________| |
|__|
 +---------------------------+ +--------------+ +---------------+
 | Transport | | Transport in | | Transport out |
 |___________________________| |______________| |_______________|

3.1. Transport Layer

The transport layer embeds the blended MessageVortex packets into the data stream of the

existing transport layer protocol.

The transport layer infrastructure SHOULD NOT be specific to anonymous communication

and should contain significant parts of non-MessageVortex traffic.

3.2. Blending Layer

The blending layer embeds MessageVortex packets into the transport layer data stream and

extracts MessageVortex packets from the transport layer.

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 11

4. Vortex Message

4.1. Overview

Figure 2 shows a Vortex message. The enclosed sections denote encrypted blocks. The

three to four letter abbreviations denote the key required for decryption. The abbreviation

k_h stands for the asymmetric host key. sk_p is the symmetric peer key. The receiving node

obtains this key by decrypting MPREFIX with its host key k_h. sk_s is the symmetric sender

key. When decrypting the MPREFIX block, the node obtains this key. The sender key protects

the header and the routing blocks. This key guarantees that the node assembling the

message does not know about upcoming identities, operations, and requests. The peer key

protects the message including structure from any third party observer.

4.2. Message Prefix Block (MPREFIX)

The PrefixBlock contains a symmetrical key as defined in Appendix A.1 and is encrypted

using the host key of the receiving peer host. The symmetric key used MUST be one out of

the set advertised by a CapabilitiesReplyBlock (see Section 7.2.6). A node MAY choose any

parameters omitted in the CapabilitiesReplyBlock freely (unless stated otherwise in Section

7.2.6). A node SHOULD avoid sending unencrypted PrefixBlocks. A prefix block MUST

contain the same forward-secret as the other prefix, the routing block, and the header

block. A host MAY reply to a message with an unencrypted message block. Any reply to a

message SHOULD be encrypted.

3.3. Routing Layer

The Routing Layer expands information contained in MessageVortex packets, processes

them, and passes generated packets to the respective Blending Layer.

3.4. Accounting Layer

The accounting layer keeps track of all ephemeral identities authorized to use a

MessageVortex node. It verifies the available quotas to an ephemeral identity.

Figure 2: Vortex message overview

+-+---+-+-+---+-+---+-+-+---+-+-+---+-+-------+-+
						C						R			
						P			H			O			
	M			P		R			E			U		P	
	P			A		E			A			T		A	
	R			D		F			D			I		Y	
	E			D		I			E			N		L	
	F			I		X			R			G		O	
	I			N	+---+		___			___		A			
	X			G	k_h	sk_s	sk_s	D							
	___			___	_______	_______	_______	_______							
k_h	sk_p														
_______	_______________________________________														

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 12

The sender MUST choose a key which may be encrypted with the host key using the

padding advertised by the CapabilitiesReplyBlock.

4.3. Inner Message Block

A node MUST always encrypt (with the symmetric key of the PrefixBlock) an

InnerMessageBlock. The encryption hides the inner structure of the message. The

InnerMessageBlock SHOULD always accommodate four or more payload chunks.

An InnerMessageBlock always starts with a padding block. This padding guarantees that

when using the same routing block multiple times, its binary structure is not repeated

throughout the messages with the same routing block. The padding MUST be the first 16

bytes of the first four non-empty payload chunks (PayloadChunks). If a payload chunk is

shorter than 16 bytes, the content of the padding SHOULD be filled with zero-valued bytes

(00h) at very end up to the required number of bytes. An inner message block

(InnerMessageBlock) SHOULD contain at least four payload chunks sized 16 bytes or bigger.

If there are less than four payload chunks, then the padding MUST contain a random

sequence of 16 bytes for the missing payload chunks. A node MUST NOT reuse random

sequences.

An InnerMessageBlock contains so-called forwardSecrets. This random number MUST be the

same in the HeaderBlock, the RoutingBlock, and the PrefixBlock. Nodes receiving Messages

containing non-matching forwardSecrets MUST discard these messages, and SHOULD NOT

send an error message.

4.3.1. Control Prefix Block

Control prefix block (CPREFIX) and MPREFIX block share the same structure and logic. It

contains the sender key sk_s. If an MPREFIX block was unencrypted, a node MAY omit the

CPREFIX block. An omitted CPREFIX block results in unencrypted control blocks

(HeaderBlock and RoutingBlock).

A prefix block MUST contain the same forwardSecret as the other prefix, the routing block,

and the header block.

4.3.2. Control Blocks

The control blocks contain the core information to process the payload. It contains a

HeaderBlock and a RoutingBlock.

4.3.2.1. Header Block

The header block (see HeaderBlock in Appendix A) contains the following information:

It MUST contain the local ephemeral identity of the routing block builder.

It MAY contain header requests.

It MAY contain the solution to a PuzzleRequired block previously opposed in a header

request.

The list of header requests MAY one of the following:

be empty

contain a single identity create request (HeaderRequestIdentity)

contain a single increase quota request

•

•

•

•

•

•

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 13

If a header block violates these rules, then a node MUST NOT reply to any header requests.

Payload and routing blocks SHOULD still be added to the workspace and processed, given

the message quota is not exceeded.

4.3.2.2. Routing Block

The routing block (see RoutingBlock in Appendix A) contains the following information:

It MUST contain a serial number uniquely identifying the routing block of this user. A

serial number MUST be unique during the lifetime of a routing block.

It MUST contain the same forward secret as the two prefix blocks and the header block.

It MAY contain assembly and processing instructions for subsequent messages.

It MAY contain a reply block for messages assigned to the owner of the identity.

4.3.3. Payload Block

Each InnerMessageBlock containing routing information SHOULD contain at least four

PayloadChunks.

5. General notes

The MessageVortex protocol is a modular protocol. It allows using different encryption

algorithms. For operation, a Vortex node SHOULD always support at least two completely

different (i.e., relying on two different mathematical problems) types of algorithms,

paddings, or modes.

5.1. Supported Symmetric Ciphers

A node MUST support the following symmetric ciphers:

AES128 (see for AES implementation details)

AES256

CAMELLIA128 (see chapter 3 for Camellia implementation details)

CAMELLIA256

A node SHOULD support any standardized, bigger key size than the smallest key.

A node MAY support Twofish ciphers (see).

5.2. Supported Asymmetric Ciphers

A node MUST support the following asymmetric ciphers:

RSA (key sizes bigger or equal to 2048) ()

ECC (named curves secp384r1, sect409k1, secp521r1) (see)

5.3. Supported MACs

A node MUST support the following Message Authentication Codes (MAC):

SHA256 (see for SHA implementation details)

RipeMD160 (see for RIPEMD implementation details)

•

•

•

•

• [FIPS-AES]

•

• [RFC3657]

•

[TWOFISH]

• [RFC8017]

• [SEC1]

• [ISO-10118-3]

• [ISO-10118-3]

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 14

A node SHOULD support the following MACs:

SHA512

RipeMD256

RipeMD512

5.4. Supported Paddings

A node MUST support the following paddings specified in :

PKCS1 (see)

PKCS7 (see)

5.5. Supported Modes

A node MUST support the following modes:

CBC (see). The used IV must be of equal length as the key)

EAX (see)

GCM (see)

NONE (only used in special cases. See Section 11)

A node SHOULD NOT use the following modes:

NONE (Except as stated when using the addRedundancy function

ECB

A node SHOULD support the following modes:

CTR ()

CCM ()

OCB ()

OFB ()

•

•

•

[RFC8017]

• [RFC8017]

• [RFC5958]

• [RFC1423]

• [EAX]

• [RFC5288]

•

•

•

• [RFC3686]

• [RFC3610]

• [RFC7253]

• [MODES]

6. Blending

Each node supports a fixed set of blending capabilities. They may be different for incoming

and outgoing messages.

The following sections describe the blending mechanism. There are currently two blending

layers specified. One layer specification for the simple mail transfer protocol (SMTP; See

) and one for the Extensible Messaging and Presence Protocol (XMPP; See

). All nodes MUST at least support "encoding=plain:0,256".

[RFC5321]

[RFC6120]

6.1. Blending in Attachments

There are two types of blending supported when using attachments.

Plain binary encoding with offset (PLAIN)

Embedding with F5 in an image (F5)

•

•

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 15

A node MUST support PLAIN blending for reasons of interoperability. A node MAY support

blending using F5.

6.1.1. PLAIN embedding into attachments

A blending layer embeds a VortexMessage in a carrier file with an offset for PLAIN blending.

For replacing a file start, a node MUST use the offset 0. The routing node MUST choose the

payload file for the message. A routing node SHOULD use a credible payload type (e.g.,

MIME type) with high entropy. It furthermore SHOULD prefix a valid header structure to

avoid easy detection of the Vortex message. A routing node SHOULD use a valid footer, if

any, to a payload file to improve blending.

A node SHOULD offer at least one PLAIN blending method for incoming Vortex messages. A

node may offer multiple offsets for incoming Vortex messages.

A plain blending is specified as follows:

plainEncoding = "("plain:" <numberOfBytesOfOffset>
 ["," <numberOfBytesOfOffset>]* ")"

6.1.2. F5 embedding into attachments

For F5, a blending layer embeds a VortexMessage into a jpeg file according to . The

password for blending may be publicly known. A routing node MAY advertise multiple

passwords. The use of F5 adds roughly a tenfold of transfer volume to the message. A

routing block building node SHOULD only use F5 blending where appropriate.

A blending in F5 is specified as follows:

Whereas commas or backslashes in passwords MUST be escaped with a backslash. Closing

brackets are treated as normal password character unless they are the last character of the

encoding specification string.

[F5]

f5Encoding = "(F5:" <passwordString> ["," <PasswordString>]* ")"

6.2. Blending into an SMTP layer

Email messages containing messages MUST be encoded with Multipurpose Internet Mail

Extensions (MIME) as specified in . All nodes MUST support BASE64 encoding. A

node MUST test all sections of a MIME message for the presence of a VortexMessage.

A vortex message is present if a block containing the peer key at the known offset of any

MIME part decodes correctly.

A node SHOULD support SMTP blending for sending and receiving. For sending SMTP as

specified in must be used. TLS layers MUST always be applied when obtaining

messages using POP3 (as specified in and) or IMAP (as specified in

). Any SMTP connection MUST employ a TLS encryption when passing any

credentials.

[RFC2045]

[RFC5321]

[RFC1939] [RFC2595]

[RFC3501]

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 16

6.3. Blending into an XMPP layer

For interoperability, an implementation SHOULD provide XMPP blending.

Blending into XMPP traffic is done using the extension of the XMPP protocol.

PLAIN and F5 blending is acceptable for this transport layer.

[XEP-0231]

7. Routing

7.1. Vortex Message Processing

7.1.1. Processing of incoming Vortex Messages

An incoming message is considered unauthenticated at first. A node should consider a

VortexMessage as authenticated as soon as the ephemeral identity is known and is not

temporary.

For an unauthenticated message the following rules apply:

A node MUST ignore all Routing blocks.

A node MUST ignore all Payload blocks.

A node SHOULD accept identity creation requests in unauthenticated messages.

A node MUST ignore any other header request except identity creation requests.

A node MUST ignore all identity creation requests which belong to an already existing

identity.

A message is considered authenticated as soon as the identity used in the header block is

known and not temporary. A node MUST NOT treat a message as authenticated if the

specified maximum number of replays have been reached. For authenticated messages the

following rules apply:

A node MUST ignore identity creation requests.

A node MUST replace the current reply block with the reply block provided in the routing

block (if any). The node MUST keep the reply block if no reply block is provided.

A node SHOULD process all header requests.

A node SHOULD add all routing blocks to the workspace.

A node SHOULD add all payload blocks to the workspace.

A routing node MUST decrement the message quota by one if a received message is

authenticated and contains at least one payload block. If a message is identified as

duplicate according to the reply protection, a node MUST NOT decrement the message

quota.

•

•

•

•

•

•

•

•

•

•

7.1.2. Processing of Routing Blocks in Workspace

A routing workspace consists of the following items:

The identity linked to it (This determines the lifetime of the workspace).

The routing combos (RoutingCombo) linked to it.

•

•

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 17

A payload chunk space. Multiple subspaces are available within this space:

ID 0 represents a message to be embedded (when reading) or a message to be

extracted to the user (when written).

ID 1 to ID maxPayloadBlocks represents the payload chunk slots in the target

message.

All blocks between ID maxPayloadBlocks+1 to ID 32767 belong to a temporary

routing block specific space.

All blocks between ID 32768 to ID 65535 belong to a shared space available to all

operations of this identity.

The accounting layer typically triggers processing. It represents either a cleanup action or a

routing event. A cleanup event deletes the following information from all workspaces:

All processed routing combos.

All routing combos with expired usagePeriod.

All payload chunks when exceeded their maxProcess time.

All expired objects.

All expired puzzles.

All expired identities.

All expired replay protections.

Note that maxProcessTime reflects the number of seconds since the arrival of the last octet

of the message at the transport layer facility. A node SHOULD NOT take additional

processing time (e.g., for anti-UBE or anti-virus) into account.

The accounting layer triggers routing events. The trigger occurs at least minProcessTime

after the last octet of the message arrived at the routing layer. A node SHOULD choose the

latest possible moment in such a way that the peer node receives the last octet of the

assembled message before maxProcessTime is reached. The calculation of the last point in

time where a message may be set SHOULD always assume that the target node is working.

A sending node SHOULD choose the time within these bounds randomly. An accounting

layer MAY trigger multiple routing combos in bulk to further obfuscate the identity of a

single transport message.

First, the processing node escapes the payload chunk at ID 0 if needed (non-special block

starting with a backslash). Next, it executes all processing instructions of a routing combo

in the sequence specified. If an instruction fails, the block at the target ID of the operation

remains unchanged. The routing layer proceeds with the subsequent processing

instructions, ignoring the error. For a detailed description of the operations see Section 7.4.

If a node succeeds in building at least one payload chunk, a VortexMessage is composed

and passed to the blending layer.

•

◦

◦

◦

◦

•

•

•

•

•

•

•

7.1.3. Processing of Outgoing MessageVortex Messages

The blending layer MUST then compose a transport layer message according to the

specification provided in the routing combo. It SHOULD choose any decoy message or

steganographic carrier in such a way that the dead parrot syndrome as specified in

 is avoided.[DeadParrot]

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 18

7.2. Header Requests

Header requests are control requests for the anonymization system. Messages with

requests or replies only MUST NOT affect any quota.

7.2.1. Request New Ephemeral Identity

Requesting a new ephemeral identity is done by sending a message containing a header

block with the new identity and an identity creation request (HeaderRequestIdentity) to a

node. The node MAY send an error block (see Section 7.3.1) if rejecting the request.

If a node accepts an identity creation request, it MUST send a reply. To accept a request

without a requirement, an accepting node MUST send back a special block containing "no

error". To accept a block with a requirement, an accepting node MUST send a special block

containing a requirement block.

7.2.2. Request Message Quota

Any valid ephemeral identity may request to raise the current message quota to a specific

value at any time. The request MUST include a reply block in the header. The request may

contain other parts. If a requested value is lower than the current quota, the node SHOULD

NOT refuse the quota request and SHOULD send a "No Error" status.

A node SHOULD reply to a HeaderRequestIncreaseMessageQuota request (see Appendix A)

of a valid ephemeral identity. The reply MUST include a requirement, an error message or a

"No Error" status message.

7.2.3. Request Increase of Message Quota

A node may request to increase the current message quota. The increase is requested by

sending a HeaderRequestIncreaseMessageQuota request to the routing node. The value

specified within the node is the new quota. HeaderRequestIncreaseMessageQuota requests

MUST include a reply block. A node SHOULD NOT use a previously sent MURB to reply.

If the requested quota is higher than the current quota, then the node SHOULD send a "no

error" reply. If the requested quota is not accepted, the node SHOULD send a

requestedQuotaOutOfBand reply.

A node accepting the request MUST send a RequirementBlock or a "no error block".

7.2.4. Request Transfer Quota

Any valid ephemeral identity may request to raise the current transfer quota to a specific

value at any time. The request MUST include a reply block in the header. The request may

contain other parts. If a requested value is lower than the current quota, the node SHOULD

NOT refuse the quota request and SHOULD send a "No Error" status.

A node SHOULD reply to a HeaderRequestIncreaseTransferQuota request (see Appendix A)

of a valid ephemeral identity. The reply MUST include a requirement, an error message, or a

"No Error" status message.

7.2.5. Query Quota

Any valid ephemeral identity may request the current message and transfer quota. The

request MUST include a reply block in the header. The request may contain other parts.

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 19

A node MUST reply to a HeaderRequestQueryQuota request (see Appendix A). The reply

MUST include the current message quota and the current message transfer quota. The

reply to this request MUST NOT include a requirement.

7.2.6. Request Capabilities

Any node MAY request the capabilities of another node. The capabilities include all

information necessary to create a parseable VortexMessage. Any node SHOULD reply to any

encrypted HeaderRequestCapability.

7.2.7. Request Nodes

A node may ask another node for a list of routing node addresses and keys. This request

may be used to bootstrap a new node and to add routing nodes increasing the

anonymization of a node. The receiving node of such a request SHOULD reply with a

requirement (e.g., RequirementPuzzleRequired).

A node SHOULD reply to a HeaderRequest request (see Appendix A) of a valid ephemeral

identity. The reply MUST include a requirement, an error message or a "No Error" status

message.

7.2.8. Request Identity Replace

This request allows a receiving node to replace an identity with the identity provided in the

message. This request is required if an adversary managed to deny the usage of a node

(e.g., by deleting the corresponding transport account). Any sending node may recover

from such an attack by sending a validly authenticated message to another identity

providing the new transport and key details.

A node SHOULD reply to a such a request of a valid known identity. The reply MUST include

an error message or a "No Error" status message.

7.3. Special Blocks

Special blocks are payload messages. They reflect messages from one node to another and

are not visible to the user. A special block starts with the character sequence '\special' (or

5Ch 73h 70h 65h 63h 69h 61h 6Ch) followed by a DER encoded special block

(SpecialBlock). Any non-special message decoding to ID 0 in a workspace starting with this

character sequence MUST escape all backslashes within the payload chunk with an

additional backslash.

7.3.1. Error Block

An error block may be sent as a reply where specified as a payload. The error block is

embedded in a special block and sent with any provided reply block. Error messages

SHOULD contain the serial number of the offending header block and MAY contain a human-

readable text providing additional messages about the error.

7.3.2. Requirement Block

If a node is receiving a requirements block, it MUST assume that the request block has been

accepted, has not been processed yet, and will be processed if the contained requirement

is met. A node MUST process a request as soon as the requirement is fulfilled. A node MUST

resend the request as soon as the requirement is met.

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 20

A node MAY reject a request, accept a request without a requirement, accept a request

upon payment (RequirementPaymentRequired), or accept a request upon solving a proof of

work puzzle (RequirementPuzzleRequired).

7.3.2.1. Puzzle Requirement

If a node requests a puzzle, it MUST send a RequirementPuzzleRequired block. The puzzle

requirement is solved, if the node receiving the puzzle is replying with a header block

containing the puzzle block and the hash of the encoded block starts with the bit sequence

mentioned in the puzzle within the period specified in the field 'valid'.

To solve a puzzle posed by a node a Vortex Message needs to be sent to the requesting

node. This Vortex Message MUST contain a header block which includes the puzzle block

and MUST have a MAC fingerprint starting with the bit sequence as specified in the

challenge. A node calculates the MAC from the unencrypted DER encoded HeaderBlock with

the algorithm specified by the node. To meet this requirement, a node adds a proofOfWork

field to the HeaderBlock.

7.3.2.2. Payment Requirement

If a node requests a payment, it MUST send a RequirementPaymentRequired block. As soon

as the requested fee is paid and confirmed, the requesting node MUST send a "No Error"

status message. The usage period 'valid' describes the period in which the payment may be

carried out. A node MUST accept the payment if carried out within the 'valid' period but

confirmed later. A node SHOULD return all unsolicited payments to the sending address.

7.4. Routing Operations

Routing operations are contained in a routing block and processed either on arrival on a

message or when a compiling new message. All Operations are reversible. No Operation is

available for generating decoy traffic. For decoy traffic, either encryption of an unpadded

block may be used, or the addRedundancy operation.

All payload chunk blocks inherit the validity time from the message routing combos (arrival

time + max(maxProcessTime)).

When applying an operation to a source block, the resulting target block inherits the expiry

of the of the source block. When having multiple different expiry times, the expiry the

furthest in the future will be applied to the target block. If the operation fails, the target

expiry remains unchanged.

7.4.1. Mapping Operation

A mapping operation is a straightforward operation mainly used in inOperations of a routing

block to map the routing block specific blocks to a permanent workspace.

7.4.2. Split and Merge Operations

The split and merge operations allow splitting and recombining message chunks. A node

MUST adhere to these constraints:

The operation must be applied at an absolute (measuring in bytes) or relative

(measured as a float value in the range 0>value>100) position.

All calculations must be done according to and in 64 Bit precision.

•

• IEEE 754 [IEEE754]

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 21

If a relative value is a non-integer result, a floor operation (cutting off all non-integer

parts) determines the number of bytes.

If an absolute value is negative, the size reflected applies to the number of bytes

counted from the end of the message chunk.

If an absolute value is bigger than the number of bytes in a block, all bytes are mapped

to the respective target block, and the other target block becomes a zero byte sized

block.

An operation MUST fail if relative values are equal to, or below zero. An operation MUST fail

if a relative value is equal to or above 100. All floating point operations must be carried out

according to and in 64-bit precision.

•

•

•

[IEEE754]

7.4.3. Encrypt and Decrypt Operations

Encryption and decryption are executed according to the standards mentioned before. An

encryption operation encrypts a block symmetrically and places the result in the target

block. The parameters MUST contain required parameters such as IV, padding, or cipher

modes. An encryption operation without a valid parameter set MUST fail.

7.4.4. Add and Remove Redundancy Operations

The addRedundancy and removeRedundancy operations are the core operations of the

protocol. They may be used to split messages and distribute message content across

multiple routing nodes. The operation is split into three steps.

Pad the input block to a multiple of the key block size in the resulting output blocks.

Apply a Vandermonde matrix with the given sizes.

Encrypt each resulting block with a separate key.

The following sections describe the order of the operations in an addRedundancy operation.

For a removeRedundancy operation invert the functions and order.

1.

2.

3.

7.4.4.1. Padding Operation

A processing node calculates the final length of all output blocks including redundancy. This

is done by L=roof((<input block size in bytes>+4)/<encryption block size in

bytes>)*<block size in bytes>. The block is prepended with a 32-bit uint length indicator in

bytes (little-endian). This length indicator i is calculated by i=<input block size in

bytes>*randominteger()*L. The rest of the input block up to length L is padded with random

data. A routing block builder SHOULD specify a PRNG and a seed to be used for this

padding. If GF(16) is applied, all numbers are treated as little-endian representations. Only

GF(8) and GF(16) are allowed fields.

For padding removal, first, the padding i at the start is removed as a little-endian integer.

Then, the length of the output block is calculated by applying <output block size in

bytes>=i mod <input block size in bytes>

This padding guarantees that each resulting block matches the block size of the

subsequent encryption operation and does not require any further padding.

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 22

7.4.4.2. Apply Matrix

Next, the input block is organized in a data matrix D of dimensions inrows,incols where

incols=(<number of data blocks>-<number of redundancy blocks>) and inrows=L/

(<number of data blocks>-<number of redundancy blocks>). The input block data is

distributed in this matrix first across, then down.

Next, we multiply the data matrix D by a Vandermonde matrix V. The V matrix has the

number of rows equal to the incols calculated, and columns are equal to the <number of

data blocks>. The content of the matrix is formed by v(i,j)=pow(i,j), whereas i reflects the

row number starting at 0, and j reflects the column number starting at 0. Please note that

calculations noted here have to be carried out in the GF noted in the respective operation

to be successful. The operation results in matrix A.

7.4.4.3. Encrypt Target Block

Each row vector of A is a new data block which is then encrypted with the corresponding

encryption key noted in keys of the addRedundancyOperation. If there are not enough keys

available, the keys used for encryption are reused from the beginning after the last key has

been used. A routing block builder SHOULD provide enough keys so that all target blocks

may be encrypted with a unique key. All encryptions SHOULD NOT use padding.

7.5. Processing of Vortex Messages

The accounting layer triggers processing according to information contained in a routing

block in the workspace. All operations MUST be executed in the sequence provided in the

routing block. Any failing operation must leave the result block unmodified.

All workspace blocks resulting in IDs 1 to maxPayloadBlock are then added to the message

and passed to the blending layer with appropriate instructions.

8. Accounting

8.1. Accounting Operations

The accounting layer has two major kinds of operations:

Time-based operations (cleanup jobs and initiation of routing)

Routing triggered operations (updating quotas, authorizing operations, and pickup of

incoming messages)

Implementations MUST provide sufficient locking mechanisms to guarantee the integrity of

accounting information and workspace at any time.

•

•

8.1.1. Time-Based Garbage Collection

The accounting layer SHOULD keep a list of expiry times. As soon as an entry (e.g., payload

block, or identity) expires, the respective structure should be removed from the workspace.

An implementation MAY choose to remove expired items periodically or when encountering

them during normal operation.

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 23

8.1.2. Time-Based Routing Initiation

The accounting layer MAY keep a list of any time a routing block is activated. For improved

privacy, the accounting layer should use a slotted model where, whenever possible,

multiple routing blocks are handled in the same period of time, and the requests to the

blending layers are mixed between the transactions.

8.1.3. Routing Based Quota Updates

A node MUST update quotas on the respective operations. It MUST decrease message quota

before processing routing blocks in the workspace. A node MUST decrease the message

quota after the processing of any header requests.

8.1.4. Routing Based Authorization

The transfer quota MUST be checked and decreased by the number of data bytes in the

payload chunks after an outgoing message is processed and fully assembled. The message

quota MUST be decreased by one on each routing block triggering the assembly of an

outgoing message.

8.1.5. Ephemeral Identity Creation

Any packet may request the creation of an ephemeral identity. A node SHOULD NOT accept

such a request without a costly requirement. The request includes a lifetime of the

ephemeral identity. The costs for creating the ephemeral identity SHOULD raise if a longer

lifetime is requested.

9. Acknowledgments

Thanks go to my family which did support me with patience and countless hours and to

Mark Zeman for his feedback challenging my thoughts and peace.

10. IANA Considerations

This memo includes no request to IANA.

Additional encryption algorithms, paddings, modes, blending layers, or puzzles MUST be

added by writing an extension to this or a subsequent RFC. For testing purposes, IDs above

1,000,000 should be used.

11. Security Considerations

The MessageVortex protocol may be understood more as a toolset than a fixed product.

Depending on the usage of the toolset anonymity and security are affected. For a detailed

analysis see .

The primary goals for security within this protocol did rely on the following focus areas:

Confidentiality

Integrity

Availability

[MVAnalysis]

•

•

•

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 24

Anonymity

3rd party anonymity

sender anonymity

receiver anonymity

All these factors are affected by the usage of the protocol. The following sections provide a

list of factors affecting the primary goals.

The Vortex protocol does not rely on any encryption on the transport layer. Vortex

messages are already encrypted. Confidentiality is not affected by the protection

mechanisms of the transport layer.

If a transport layer supports encryption, a Vortex node SHOULD use it to improve the

privacy of the message.

Anonymity is affected by the inner workings of the blending layer in many ways. A Vortex

message cannot be read by anyone except the peer nodes and the routing block builder,

but the presence of a vortex node message may be detected. This may be done either by

detecting the typical high entropy of an encrypted file, broken structures of a carrier file, a

meaningless content of a carrier file, or the contextless communication of the transport

layer with its peer partner. A blending layer SHOULD minimize the possibility of easy

detection by minimizing these effects.

A blending layer SHOULD use carrier files with high compression or encryption. Carrier files

SHOULD NOT have inner structures so that the payload is comparable to valid content. To

achieve undetectability by a human reviewer, a routing block builder should use F5

blending instead of PLAIN blending. This, however, increases the protocol overhead roughly

by a tenfold.

The two layers 'routing' and 'accounting' have the deepest insight into a Vortex message's

inner working. They know the immediate peer sender and the peer recipients of all payload

chunks. As decoy traffic is generated by combining chunks and applying redundancy

calculations upon them, a node can never know whether a malfunction (e.g., when doing a

recovery calculation) was intended or not. Therefore a node is unable to tell a failed

transaction apart from a terminated transaction. It furthermore cannot tell content apart

from decoy traffic.

A routing block builder SHOULD follow the following rules in order not to compromise a

Vortex message's anonymity:

All operations applied SHOULD be credibly involved in a message transfer.

There should always be a sufficient subset of the result of an addRedundancy operation

sent to peers to allow recovery of the data built.

The anonymity set of a message should be sufficiently large to avoid legal prosecution

of all jurisdictional entities involved. It has to be large enough to do so even if a certain

amount of the anonymity set cooperates with an adversary.

Encryption and decryption SHOULD follow whenever possible normal usage. Avoid

encrypting a block on a node with one key and decrypting it with a different key on the

same or an adjacent node.

Traffic peaks SHOULD be uniformly distributed within the whole anonymity set.

A routing block SHOULD be used for a limited number of messages. If used as a

message block for the node itself it should be used only once. A block builder SHOULD

•

◦

◦

◦

•

•

•

•

•

•

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 25

[CCITT.X208.1988]

[CCITT.X680.2002]

[EAX]

[F5]

[FIPS-AES]

[IEEE754]

[ISO-10118-3]

[MODES]

[RFC1423]

12. References

12.1. Normative References

,

,

, November 1998.

,

,

November 2002.

, , and , ,

2011.

,

, 24 October 2001.

,

, November 2011.

, , 29 August

2008.

,

, March 2004.

,

, December

2001.

,

, , ,

February 1993, .

use the HeaderRequestReplaceIdentity block to update reply routing blocks on a regular

base. Implementers should always keep in mind that the same routing block is

identifiable as such by its structure.

An active adversary cannot use blocks from other routing block builders for his purposes.

He may falsify the result by injecting wrong message chunks or by not sending a message.

Such message disruptions may be detected by intentionally routing some information to

the routing block builders' node. If the Vortex message does not carry the information

expected the node may safely assume that one of the involved nodes is misbehaving. A

block building node MAY calculate reputation for involved nodes over time. A block building

node MAY build redundancy paths into a routing block to withstand such malicious nodes.

Receiver anonymity is in danger if the handling of message header and content is not done

with care. An attacker might send a bugged message (e.g., with a DKIM or DMARC header)

to deanonymize a recipient. Great care has to be taken when handling any other than local

references when processing, verifying, or rendering a message.

International Telephone and Telegraph Consultative Committee

"Specification of Abstract Syntax Notation One (ASN.1)" CCITT

Recommendation X.208

International Telephone and Telegraph Consultative Committee

"Abstract Syntax Notation One (ASN.1): Specification of basic notation"

Bellare, M. Rogaway, P. D. Wagner "The EAX mode of operation"

Westfeld, A. "F5 - A Steganographic Algorithm - High Capacity Despite

Better Steganalysis"

Federal Information Processing Standard (FIPS) "Specification for the

ADVANCED ENCRYPTION STANDARD (AES)"

IEEE "754-2008 - IEEE Standard for Floating-Point Arithmetic"

International Organization for Standardization "ISO/IEC 10118-3:2004 --

Information technology -- Security techniques -- Hash-functions -- Part 3:

Dedicated hash-functions"

National Institute for Standards and Technology (NIST) "Recommendation

for Block Cipher Modes of Operation: Methods and Techniques"

Balenson, D. "Privacy Enhancement for Internet Electronic Mail: Part III:

Algorithms, Modes, and Identifiers" RFC 1423 DOI 10.17487/RFC1423

<https://www.rfc-editor.org/info/rfc1423>

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 26

https://www.rfc-editor.org/info/rfc1423

[RFC2119]

[RFC3610]

[RFC3657]

[RFC3686]

[RFC5234]

[RFC5288]

[RFC5958]

[RFC7253]

[RFC8017]

[SEC1]

[TWOFISH]

[XEP-0231]

[DeadParrot]

[KAnon]

[MVAnalysis]

, ,

, , , March 1997,

.

, , and , ,

, , September 2003,

.

 and ,

, , ,

January 2004, .

,

, ,

, January 2004, .

 and ,

, , , , January 2008,

.

, , and ,

, , , August

2008, .

, , , ,

August 2010, .

 and , ,

, , May 2014,

.

, , , and ,

, ,

, November 2016, .

, , 21 May 2009.

,

, March 1999.

 and , , 3 September 2008,

.

12.2. Informative References

, , and ,

, 2013,

.

, , and , ,

2003.

, , 2018,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels"

BCP 14 RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-

editor.org/info/rfc2119>

Whiting, D. Housley, R. N. Ferguson "Counter with CBC-MAC (CCM)"

RFC 3610 DOI 10.17487/RFC3610 <https://www.rfc-

editor.org/info/rfc3610>

Moriai, S. A. Kato "Use of the Camellia Encryption Algorithm in

Cryptographic Message Syntax (CMS)" RFC 3657 DOI 10.17487/RFC3657

<https://www.rfc-editor.org/info/rfc3657>

Housley, R. "Using Advanced Encryption Standard (AES) Counter Mode With

IPsec Encapsulating Security Payload (ESP)" RFC 3686 DOI 10.17487/

RFC3686 <https://www.rfc-editor.org/info/rfc3686>

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:

ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://

www.rfc-editor.org/info/rfc5234>

Salowey, J. Choudhury, A. D. McGrew "AES Galois Counter Mode

(GCM) Cipher Suites for TLS" RFC 5288 DOI 10.17487/RFC5288

<https://www.rfc-editor.org/info/rfc5288>

Turner, S. "Asymmetric Key Packages" RFC 5958 DOI 10.17487/RFC5958

<https://www.rfc-editor.org/info/rfc5958>

Krovetz, T. P. Rogaway "The OCB Authenticated-Encryption Algorithm"

RFC 7253 DOI 10.17487/RFC7253 <https://www.rfc-editor.org/

info/rfc7253>

Moriarty, K., Ed. Kaliski, B. Jonsson, J. A. Rusch "PKCS #1: RSA

Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/

RFC8017 <https://www.rfc-editor.org/info/rfc8017>

Certicom Research "SEC 1: Elliptic Curve Cryptography"

Schneier, B. "The Twofish Encryptions Algorithm: A 128-Bit Block Cipher,

1st Edition"

Peter, S.A. P. Simerda "XEP-0231: Bits of Binary"

<https://xmpp.org/extensions/xep-0231.html>

Houmansadr, A. Burbaker, C. V. Shmatikov "The Parrot is Dead:

Observing Unobservable Network Communications" <https://

people.cs.umass.edu/~amir/papers/parrot.pdf>

Ahn, L. Bortz, A. N.J. Hopper "k-Anonymous Message Transmission"

Gwerder, M. "MessageVortex" <https://messagevortex.net/devel/

messageVortex.pdf>

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 27

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3657
https://www.rfc-editor.org/info/rfc3686
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5958
https://www.rfc-editor.org/info/rfc7253
https://www.rfc-editor.org/info/rfc7253
https://www.rfc-editor.org/info/rfc8017
https://xmpp.org/extensions/xep-0231.html
https://people.cs.umass.edu/~amir/papers/parrot.pdf
https://people.cs.umass.edu/~amir/papers/parrot.pdf
https://messagevortex.net/devel/messageVortex.pdf
https://messagevortex.net/devel/messageVortex.pdf

[RFC1939]

[RFC2045]

[RFC2595]

[RFC3501]

[RFC5321]

[RFC6120]

 and , , , ,

, May 1996,

.

 and ,

, ,

, November 1996, .

, , ,

, June 1999, .

, ,

, , March 2003,

.

, , ,

, October 2008, .

, ,

, , March 2011,

.

Myers, J. M. Rose "Post Office Protocol - Version 3" STD 53 RFC 1939

DOI 10.17487/RFC1939 <https://www.rfc-editor.org/info/

rfc1939>

Freed, N. N. Borenstein "Multipurpose Internet Mail Extensions (MIME)

Part One: Format of Internet Message Bodies" RFC 2045 DOI 10.17487/

RFC2045 <https://www.rfc-editor.org/info/rfc2045>

Newman, C. "Using TLS with IMAP, POP3 and ACAP" RFC 2595 DOI

10.17487/RFC2595 <https://www.rfc-editor.org/info/rfc2595>

Crispin, M. "INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1"

RFC 3501 DOI 10.17487/RFC3501 <https://www.rfc-

editor.org/info/rfc3501>

Klensin, J. "Simple Mail Transfer Protocol" RFC 5321 DOI 10.17487/

RFC5321 <https://www.rfc-editor.org/info/rfc5321>

Saint-Andre, P. "Extensible Messaging and Presence Protocol (XMPP): Core"

RFC 6120 DOI 10.17487/RFC6120 <https://www.rfc-

editor.org/info/rfc6120>

Appendix A. The ASN.1 schema for Vortex messages

The following sections contain the ASN.1 modules specifying the MessageVortex Protocol.

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 28

https://www.rfc-editor.org/info/rfc1939
https://www.rfc-editor.org/info/rfc1939
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2595
https://www.rfc-editor.org/info/rfc3501
https://www.rfc-editor.org/info/rfc3501
https://www.rfc-editor.org/info/rfc5321
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6120

A.1. The main VortexMessageBlocks

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 29

MessageVortex-Schema DEFINITIONS EXPLICIT TAGS ::=
BEGIN
 EXPORTS PrefixBlock, InnerMessageBlock, RoutingBlock,
 maxWorkspaceID;
 IMPORTS SymmetricKey, AsymmetricKey, MacAlgorithmSpec, CipherSpec
 FROM MessageVortex-Ciphers
 HeaderRequest
 FROM MessageVortex-Requests
 PayloadOperation, MapBlockOperation
 FROM MessageVortex-Operations

 UsagePeriod, BlendingSpec
 FROM MessageVortex-Helpers;

 --***
 -- Constant definitions
 --***
 -- maximum serial number
 maxSerial INTEGER ::= 4294967295
 -- maximum number of administrative requests
 maxNumOfRequests INTEGER ::= 8
 -- maximum number of seconds which the message might be delayed
 -- in the local queue (starting from startOffset)
 maxDurationOfProcessing INTEGER ::= 86400
 -- maximum id of an operation
 minWorkspaceID INTEGER ::= 32768
 -- maximum number of routing blocks in a message
 maxRoutingBlks INTEGER ::= 127
 -- maximum number a block may be replayed
 maxNumOfReplays INTEGER ::= 127
 -- maximum number of payload chunks in a message
 maxPayloadBlks INTEGER ::= 127
 -- maximum number of seconds a proof of non revocation may be old
 maxTimeCachedProof INTEGER ::= 86400
 -- The maximum ID of the workspace
 maxWorkspaceId INTEGER ::= 65535
 -- The maximum number of assembly instructions per combo
 maxAssemblyInstr INTEGER ::= 255

 --***
 -- Types
 --***
 PuzzleIdentifier ::= OCTET STRING (SIZE(0..32))
 ChainSecret ::= OCTET STRING (SIZE (16..64))

 --***
 -- Block Definitions
 --***
 PrefixBlock ::= SEQUENCE {
 version [0] INTEGER OPTIONAL,
 key [2] SymmetricKey
 }

 InnerMessageBlock ::= SEQUENCE {
 padding OCTET STRING,
 prefix CHOICE {

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 30

 plain [11011] PrefixBlock,
 -- contains prefix encrypted with receivers
 -- public key
 encrypted [11012] OCTET STRING
 },
 header CHOICE {
 -- debug/internal use only
 plain [11021] HeaderBlock,
 -- contains encrypted identity block
 encyrpted [11022] OCTET STRING
 },
 -- contains signature of Identity [as stored in
 -- HeaderBlock; signed unencrypted HeaderBlock without
 -- Tag]
 identitySignature OCTET STRING,
 -- contains routing information (next hop) for the
 -- payloads
 routing [11001] CHOICE {
 plain [11031] RoutingBlock,
 -- contains encrypted routing block
 encyrpted [11032] OCTET STRING
 },
 -- contains the actual payload
 payload SEQUENCE (SIZE (0..maxPayloadBlks))
 OF OCTET STRING
 }

 HeaderBlock ::= SEQUENCE {
 -- Public key of the identity representing this
 -- transmission
 identityKey AsymmetricKey,
 -- serial identifying this block
 serial INTEGER (0..maxSerial),
 -- number of times this block may be replayed
 -- (Tuple is identityKey, serial while
 -- UsagePeriod of block)
 maxReplays INTEGER (0..maxNumOfReplays),
 -- subsequent Blocks are not processed before
 -- valid time.
 -- Host may reject too long retention.
 -- Recomended validity support >=1Mt.
 valid UsagePeriod,
 -- contains the MAC-Algorithm used for signing
 signAlgorithm MacAlgorithmSpec,
 -- contains administrative requests such as
 -- quota requests
 requests SEQUENCE
 (SIZE (0..maxNumOfRequests))
 OF HeaderRequest ,
 -- Reply Block for the requests
 requestReplyBlock RoutingCombo OPTIONAL,
 -- padding and identitifier required to solve
 -- the cryptopuzzle
 identifier [12201] PuzzleIdentifier OPTIONAL,
 -- This is for solving crypto puzzles
 proofOfWork[12202] OCTET STRING OPTIONAL
 }

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 31

 RoutingBlock ::= SEQUENCE {
 -- contains the routingCombos
 routing [331] SEQUENCE
 (SIZE (0..maxRoutingBlks))
 OF RoutingCombo,
 -- contains the mapping operations to map
 -- payloads to the workspace
 mappings [332] SEQUENCE
 (SIZE (0..maxPayloadBlks))
 OF MapBlockOperation,
 -- contains a routing block which may be used
 -- when sending error messages back to the quota
 -- owner this routing block may be cached for
 -- future use
 replyBlock [332] SEQUENCE {
 murb RoutingCombo,
 maxReplay INTEGER,
 validity UsagePeriod
 } OPTIONAL
 }

 RoutingCombo ::= SEQUENCE {
 -- contains the period when the payload should
 -- be processed.
 -- Router might refuse too long queue retention
 -- Recommended support for retention >=1h
 minProcessTime INTEGER
 (0..maxDurationOfProcessing),
 maxProcessTime INTEGER
 (0..maxDurationOfProcessing),
 -- The message key to encrypt the message
 peerKey [401] SEQUENCE
 (SIZE (1..maxNumOfReplays))
 OF SymmetricKey OPTIONAL,
 -- contains the next recipient
 recipient [402] BlendingSpec,
 -- PrefixBlock encrypted with message key
 mPrefix [403] SEQUENCE
 (SIZE (1..maxNumOfReplays))
 OF OCTET STRING OPTIONAL,
 -- PrefixBlock encrypted with sender key
 cPrefix [404] OCTET STRING OPTIONAL,
 -- HeaderBlock encrypted with sender key
 header [405] OCTET STRING OPTIONAL,
 -- RoutingBlock encrypted with sender key
 routing [406] OCTET STRING OPTIONAL,
 -- contains information for building messages
 -- (when used as MURB)
 -- ID 0 denotes original/local message
 -- ID 1-maxPayloadBlks denotes target message
 -- ID 32767 denotes a solicited reply block
 -- 32768-maxWorkspaceId shared workspace for all
 -- blocks of this identity)
 assembly [407] SEQUENCE
 (SIZE (0..maxAssemblyInstr))
 OF PayloadOperation,
 -- optional for storage of the arrival time
 validity [408] UsagePeriod OPTIONAL

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 32

 }

END

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 33

A.2. The VortexMessage Ciphers Structures

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 34

MessageVortex-Ciphers DEFINITIONS EXPLICIT TAGS ::=
BEGIN
 EXPORTS SymmetricKey, AsymmetricKey, MacAlgorithmSpec,
 MacAlgorithm, CipherSpec, PRNGType;

 CipherSpec ::= SEQUENCE {
 asymmetric [16001] AsymAlgSpec OPTIONAL,
 symmetric [16002] SymAlgSpec OPTIONAL,
 mac [16003] MacAlgorithmSpec OPTIONAL,
 cipherUsage [16004] CipherUsage
 }

 CipherUsage ::= ENUMERATED {
 sign (200),
 encrypt (210)
 }

 SymAlgSpec ::= SEQUENCE {
 algorithm [16101]SymmetricAlgorithm,
 -- if ommited: pkcs7
 padding [16102]CipherPadding OPTIONAL,
 -- if ommited: cbc
 mode [16103]CipherMode OPTIONAL,
 parameter [16104]AlgParameters OPTIONAL
 }

 AsymAlgSpec ::= SEQUENCE {
 algorithm AsymmetricAlgorithm,
 -- if ommited: pkcs1
 padding [16102]CipherPadding OPTIONAL,
 parameter AlgParameters OPTIONAL
 }

 SymmetricKey ::= SEQUENCE {
 keyType SymmetricAlgorithm,
 parameter AlgParameters,
 key OCTET STRING (SIZE(16..512))
 }

 AsymmetricKey ::= SEQUENCE {
 keyType AsymmetricAlgorithm,
 -- private key encoded as PKCS#8/PrivateKeyInfo
 publicKey [2] OCTET STRING,
 -- private key encoded as
 -- X.509/SubjectPublicKeyInfo
 privateKey [3] OCTET STRING OPTIONAL
 }

 SymmetricAlgorithm ::= ENUMERATED {
 aes128 (1000), -- required
 aes192 (1001), -- optional support
 aes256 (1002), -- required
 camellia128 (1100), -- required
 camellia192 (1101), -- optional support
 camellia256 (1102), -- required
 twofish128 (1200), -- optional support
 twofish192 (1201), -- optional support

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 35

 twofish256 (1202) -- optional support
 }

 AsymmetricAlgorithm ::= ENUMERATED {
 rsa (2000),
 dsa (2100),
 ec (2200),
 ntru (2300)
 }
 ECCurveType ::= ENUMERATED{
 secp384r1 (2500),
 sect409k1 (2501),
 secp521r1 (2502)
 }
 AlgParameters ::= SEQUENCE {
 keySize [9000] INTEGER (0..65535) OPTIONAL,
 curveType [9001] ECCurveType OPTIONAL,
 iv [9002] OCTET STRING OPTIONAL,
 nonce [9003] OCTET STRING OPTIONAL,
 mode [9004] CipherMode OPTIONAL,
 padding [9005] CipherPadding OPTIONAL,
 n [9010] INTEGER OPTIONAL,
 p [9011] INTEGER OPTIONAL,
 q [9012] INTEGER OPTIONAL,
 k [9013] INTEGER OPTIONAL,
 t [9014] INTEGER OPTIONAL
 }

 CipherMode ::= ENUMERATED {
 cbc (10000), -- required
 ctr (10001), -- required
 ccm (10002), -- optional support
 gcm (10003), -- optional support
 ocb (10004), -- optional support
 ofb (10005), -- optional support
 xts (10006), -- optional support
 none (10100) -- required
 }

 CipherPadding ::= ENUMERATED {
 none (10200), -- required
 pkcs1 (10201), -- required
 rsaesOaep (10202), -- optional support
 oaepSha256Mgf1 (10203), -- optional support
 pkcs7 (10301), -- required
 ap (10221) -- required
 }

 MacAlgorithm ::= ENUMERATED {
 sha3-256 (3000), -- required
 sha3-384 (3001), -- optional support
 sha3-512 (3002), -- required
 ripemd160 (3100), -- optional support
 ripemd256 (3101), -- required
 ripemd320 (3102) -- optional support
 }

 MacAlgorithmSpec ::= SEQUENCE {

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 36

 algorithm MacAlgorithm,
 parameter AlgParameters
 }

 PRNGAlgorithmSpec ::= SEQUENCE {
 type PRNGType,
 seed OCTET STRING
 }

 PRNGType ::= ENUMERATED {
 mrg32k3a (10300), -- required
 blumMicali (10301) -- required
 }

END

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 37

A.3. The VortexMessage Replies Structures

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 38

MessageVortex-Replies DEFINITIONS EXPLICIT TAGS ::=
BEGIN
 EXPORTS SpecialBlock;
 IMPORTS BlendingSpec, NodeSpec
 FROM MessageVortex-Helpers
 RequirementBlock
 FROM MessageVortex-Requirements
 CipherSpec, PRNGType, MacAlgorithm
 FROM MessageVortex-Ciphers
 maxGFSize
 FROM MessageVortex-Operations
 maxNumberOfReplays
 FROM MessageVortex-Schema;

 SpecialBlock ::= CHOICE {
 capabilities [1] ReplyCapability,
 requirement [2] SEQUENCE (SIZE (1..127))
 OF RequirementBlock,
 quota [4] ReplyCurrentQuota,
 nodes [5] ReplyNodes,
 status [99] StatusBlock
 }

 StatusBlock ::= SEQUENCE {
 code StatusCode
 }

 StatusCode ::= ENUMERATED {

 -- System messages
 ok (2000),
 quotaStatus (2101),
 puzzleRequired (2201),

 -- protocol usage failures
 transferQuotaExceeded (3001),
 messageQuotaExceeded (3002),
 requestedQuotaOutOfBand (3003),
 identityUnknown (3101),
 messageChunkMissing (3201),
 messageLifeExpired (3202),
 puzzleUnknown (3301),

 -- capability errors
 macAlgorithmUnknown (3801),
 symmetricAlgorithmUnknown (3802),
 asymmetricAlgorithmUnknown (3803),
 prngAlgorithmUnknown (3804),
 missingParameters (3820),
 badParameters (3821),

 -- Mayor host specific errors
 hostError (5001)
 }

 ReplyNodes ::= SEQUENCE {
 node SEQUENCE (SIZE (1..5))

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 39

 OF NodeSpec
 }

 ReplyCapability ::= SEQUENCE {
 -- supported ciphers
 cipher SEQUENCE (SIZE (2..256))
 OF CipherSpec,
 -- supported mac algorithms
 mac SEQUENCE (SIZE (2..256))
 OF MacAlgorithm,
 -- supported PRNGs
 prng SEQUENCE (SIZE (2..256))
 OF PRNGType,
 -- maximum number of bytes to be transferred
 -- (outgoing bytes in vortex message without blending)
 maxTransferQuota INTEGER (0..4294967295),
 -- maximum number of messages to process for this identity
 maxMessageQuota INTEGER (0..4294967295),
 -- maximum simultaneously tracked header serials
 maxHeaderSerials INTEGER (0..4294967295),
 -- maximum simultaneously valid build operations in workspace
 maxBuildOps INTEGER (0..4294967295),
 -- maximum payload size
 maxPayloadSize INTEGER (0..4294967295),
 -- maximum active payloads (without intermediate products)
 maxActivePayloads INTEGER (0..4294967295),
 -- maximum header lifespan in seconds
 maxHeaderLive INTEGER (0..4294967295),
 -- maximum number of replays accepted,
 maxReplay INTEGER (0..maxNumberOfReplays),
 -- Supported inbound blending
 supportedBlendingIn SEQUENCE OF BlendingSpec,
 -- Supported outbound blending
 supportedBlendingOut SEQUENCE OF BlendingSpec,
 -- supported galoise fields
 supportedGFSize SEQUENCE OF INTEGER (1..maxGF)
 }

 ReplyCurrentQuota ::= SEQUENCE {
 messages INTEGER (0..4294967295),
 size INTEGER (0..4294967295)
 }

 ReplyUpgrade ::= SEQUENCE {
 -- The offered version
 version [0] OCTET STRING,
 -- The offered identitfier
 identifier [1] OCTET STRING,
 -- The archive or blob containing the software
 blob [2] OCTET STRING OPTIONAL
 }

END

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 40

A.4. The VortexMessage Requirements Structures

MessageVortex-Requirements DEFINITIONS EXPLICIT TAGS ::=
BEGIN
 EXPORTS RequirementBlock;
 IMPORTS MacAlgorithmSpec
 FROM MessageVortex-Ciphers
 UsagePeriod, UsagePeriod
 FROM MessageVortex-Helpers;

 RequirementBlock ::= CHOICE {
 puzzle [1] RequirementPuzzleRequired,
 payment [2] RequirementPaymentRequired
 }

 RequirementPuzzleRequired ::= SEQUENCE {
 -- bit sequence at beginning of hash from
 -- the encrypted identity block
 challenge BIT STRING,
 mac MacAlgorithmSpec,
 valid UsagePeriod,
 identifier INTEGER (0..4294967295)
 }

 RequirementPaymentRequired ::= SEQUENCE {
 account OCTET STRING,
 ammount REAL,
 currency Currency
 }

 Currency ::= ENUMERATED {
 btc (8001),
 eth (8002),
 zec (8003)
 }

END

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 41

A.5. The VortexMessage Helpers Structures

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 42

MessageVortex-Helpers DEFINITIONS EXPLICIT TAGS ::=
BEGIN
 EXPORTS UsagePeriod, BlendingSpec, NodeSpec;
 IMPORTS AsymmetricKey, SymmetricKey
 FROM MessageVortex-Ciphers;

 -- the maximum number of embeddable parameters
 maxNumberOfParameter INTEGER ::= 127

 UsagePeriod ::= CHOICE {
 absolute [2] AbsoluteUsagePeriod,
 relative [3] RelativeUsagePeriod
 }

 AbsoluteUsagePeriod ::= SEQUENCE {
 notBefore [0] GeneralizedTime OPTIONAL,
 notAfter [1] GeneralizedTime OPTIONAL
 }

 RelativeUsagePeriod ::= SEQUENCE {
 notBefore [0] INTEGER OPTIONAL,
 notAfter [1] INTEGER OPTIONAL
 }

 -- contains a node spec of a routing point
 -- At the moment either smtp:<email> or xmpp:<jabber>
 BlendingSpec ::= SEQUENCE {
 target [1] NodeSpec,
 blendingType [2] IA5String,
 parameter [3] SEQUENCE
 (SIZE (0..maxNumberOfParameter))
 OF BlendingParameter
 }

 BlendingParameter ::= CHOICE {
 offset [1] INTEGER,
 symmetricKey [2] SymmetricKey,
 asymmetricKey [3] AsymmetricKey,
 passphrase [4] OCTET STRING
 }

 NodeSpec ::= SEQUENCE {
 transportProtocol [1] Protocol,
 recipientAddress [2] IA5String,
 recipientKey [3] AsymmetricKey OPTIONAL
 }

 Protocol ::= ENUMERATED {
 smtp (100),
 xmmp (110)
 }

END

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 43

A.6. The VortexMessage Additional Structures

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 44

-- States reflected:
-- Tuple()=Val()[vallidity; allowed operations]
-- {Store}
-- - Tuple(identity)=Val(messageQuota,transferQuota,
-- sequence of Routingblocks for Error Message
-- Routing) [validity; Requested at creation; may
-- be extended upon request] {identityStore}
-- - Tuple(Identity,Serial)=maxReplays ['valid' from
-- Identity Block; from First Identity Block; may
-- only be reduced] {IdentityReplayStore}

MessageVortex-NonProtocolBlocks DEFINITIONS
 EXPLICIT TAGS ::=
BEGIN
 IMPORTS PrefixBlock, InnerMessageBlock,
 RoutingBlock,
 maxWorkspaceID
 FROM MessageVortex-Schema
 UsagePeriod, NodeSpec, BlendingSpec
 FROM MessageVortex-Helpers
 AsymmetricKey
 FROM MessageVortex-Ciphers
 RequirementBlock
 FROM MessageVortex-Requirements;

 -- maximum size of transfer quota in bytes of an
 -- identity
 maxTransferQuota INTEGER ::= 4294967295
 -- maximum # of messages quota in messages of an
 -- identity
 maxMessageQuota INTEGER ::= 4294967295

 -- do not use these blocks for protocol encoding
 -- (internal only)
 VortexMessage ::= SEQUENCE {
 prefix CHOICE {
 plain [10011] PrefixBlock,
 -- contains prefix encrypted with receivers
 -- public key
 encrypted [10012] OCTET STRING
 },
 innerMessage CHOICE {
 plain [10021] InnerMessageBlock,
 -- contains inner message encrypted with
 -- Symmetric key from prefix
 encrypted [10022] OCTET STRING
 }
 }

 MemoryPayloadChunk ::= SEQUENCE {
 id INTEGER (0..maxWorkspaceID),
 payload [100] OCTET STRING,
 validity UsagePeriod
 }

 IdentityStore ::= SEQUENCE {
 identities SEQUENCE (SIZE (0..4294967295))

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 45

 OF IdentityStoreBlock
 }

 IdentityStoreBlock ::= SEQUENCE {
 valid UsagePeriod,
 messageQuota INTEGER (0..maxMessageQuota),
 transferQuota INTEGER (0..maxTransferQuota),
 -- if omitted this is a node identity
 identity [1001] AsymmetricKey OPTIONAL,
 -- if ommited own identity key
 nodeAddress [1002] NodeSpec OPTIONAL,
 -- Contains the identity of the owning node;
 -- May be ommited if local node
 nodeKey [1003] SEQUENCE OF AsymmetricKey
 OPTIONAL,
 routingBlocks [1004] SEQUENCE OF RoutingBlock
 OPTIONAL,
 replayStore [1005] IdentityReplayStore,
 requirement [1006] RequirementBlock OPTIONAL
 }

 IdentityReplayStore ::= SEQUENCE {
 replays SEQUENCE (SIZE (0..4294967295))
 OF IdentityReplayBlock
 }

 IdentityReplayBlock ::= SEQUENCE {
 identity AsymmetricKey,
 valid UsagePeriod,
 replaysRemaining INTEGER (0..4294967295)
 }

END

Author's Address

Martin Gwerder

University of Applied Sciences of Northwestern Switzerland

Bahnhofstrasse 5

CH- 5210 Windisch

Switzerland

 +41 56 202 76 81 Phone:

 rfc@messagevortex.net Email:

Internet-Draft MessageVortex Protocol February 2019

Gwerder Expires 28 August 2019 Page 46

tel:+41%2056%20202%2076%2081
mailto:rfc@messagevortex.net

	MessageVortex Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Protocol Specification
	1.3. Number Specification

	2. Entities Overview
	2.1. Node
	2.1.1. Blocks
	2.1.2. NodeSpec
	2.1.2.1. NodeSpec for SMTP nodes
	2.1.2.2. NodeSpec for XMPP nodes

	2.2. Peer Partner
	2.3. Encryption keys
	2.3.1. Identity Keys
	2.3.2. Peer Key
	2.3.3. Sender Key

	2.4. Vortex Message
	2.5. Message
	2.6. Key and MAC specifications and usages
	2.6.1. Asymmetric Keys
	2.6.2. Symmetric Keys

	2.7. Transport Address
	2.8. Identity
	2.8.1. Peer Identity
	2.8.2. Ephemeral Identity
	2.8.3. Official Identity

	2.9. Workspace
	2.10. Multi-Use Reply Blocks

	3. Layer Overview
	3.1. Transport Layer
	3.2. Blending Layer
	3.3. Routing Layer
	3.4. Accounting Layer

	4. Vortex Message
	4.1. Overview
	4.2. Message Prefix Block (MPREFIX)
	4.3. Inner Message Block
	4.3.1. Control Prefix Block
	4.3.2. Control Blocks
	4.3.2.1. Header Block
	4.3.2.2. Routing Block

	4.3.3. Payload Block

	5. General notes
	5.1. Supported Symmetric Ciphers
	5.2. Supported Asymmetric Ciphers
	5.3. Supported MACs
	5.4. Supported Paddings
	5.5. Supported Modes

	6. Blending
	6.1. Blending in Attachments
	6.1.1. PLAIN embedding into attachments
	6.1.2. F5 embedding into attachments

	6.2. Blending into an SMTP layer
	6.3. Blending into an XMPP layer

	7. Routing
	7.1. Vortex Message Processing
	7.1.1. Processing of incoming Vortex Messages
	7.1.2. Processing of Routing Blocks in Workspace
	7.1.3. Processing of Outgoing MessageVortex Messages

	7.2. Header Requests
	7.2.1. Request New Ephemeral Identity
	7.2.2. Request Message Quota
	7.2.3. Request Increase of Message Quota
	7.2.4. Request Transfer Quota
	7.2.5. Query Quota
	7.2.6. Request Capabilities
	7.2.7. Request Nodes
	7.2.8. Request Identity Replace

	7.3. Special Blocks
	7.3.1. Error Block
	7.3.2. Requirement Block
	7.3.2.1. Puzzle Requirement
	7.3.2.2. Payment Requirement

	7.4. Routing Operations
	7.4.1. Mapping Operation
	7.4.2. Split and Merge Operations
	7.4.3. Encrypt and Decrypt Operations
	7.4.4. Add and Remove Redundancy Operations
	7.4.4.1. Padding Operation
	7.4.4.2. Apply Matrix
	7.4.4.3. Encrypt Target Block

	7.5. Processing of Vortex Messages

	8. Accounting
	8.1. Accounting Operations
	8.1.1. Time-Based Garbage Collection
	8.1.2. Time-Based Routing Initiation
	8.1.3. Routing Based Quota Updates
	8.1.4. Routing Based Authorization
	8.1.5. Ephemeral Identity Creation

	9. Acknowledgments
	10. IANA Considerations
	11. Security Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. The ASN.1 schema for Vortex messages
	A.1. The main VortexMessageBlocks
	A.2. The VortexMessage Ciphers Structures
	A.3. The VortexMessage Replies Structures
	A.4. The VortexMessage Requirements Structures
	A.5. The VortexMessage Helpers Structures
	A.6. The VortexMessage Additional Structures

	Author's Address

