
MessageVortex Protocol

Abstract

The MessageVortex (referred to as Vortex) protocol achieves different degrees of

anonymity, including sender, receiver, and third-party anonymity, by specifying messages

embedded within existing transfer protocols, such as SMTP or XMPP, sent via peer nodes to

one or more recipients.

The protocol outperforms others by decoupling the transport from the final transmitter and

receiver. No trust is placed into any infrastructure except for that of the sending and

receiving parties of the message. The creator of the routing block has full control over the

message flow. Routing nodes gain no non-obvious knowledge about the messages even

when collaborating. While third-party anonymity is always achieved, the protocol also

allows for either sender or receiver anonymity.

Workgroup:

Internet-Draft:

Published:

Intended

Status:

Expires:

Author:

Internet Engineering Task Force

draft-gwerder-messagevortexmain-02

23 April 2019

Experimental

25 October 2019

 M. Gwerder

FHNW

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP

79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note

that other groups may also distribute working documents as Internet-Drafts. The list of

current Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be

updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use

Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 October 2019.

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and

https://trustee.ietf.org/license-info

Gwerder Expires 25 October 2019 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

restrictions with respect to this document. Code Components extracted from this document

must include Revised BSD License text as described in Section 4.e of the Trust Legal

Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

1.2. Protocol Specification

1.3. Number Specification

2. Entities Overview

2.1. Node

2.1.1. Blocks

2.1.2. NodeSpec

2.1.2.1. NodeSpec for SMTP nodes

2.1.2.2. NodeSpec for XMPP nodes

2.2. Peer Partners

2.3. Encryption keys

2.3.1. Identity Keys

2.3.2. Peer Key

2.3.3. Sender Key

2.4. Vortex Message

2.5. Message

2.6. Key and MAC specifications and usage

2.6.1. Asymmetric Keys

2.6.2. Symmetric Keys

2.7. Transport Address

2.8. Identity

2.8.1. Peer Identity

2.8.2. Ephemeral Identity

2.8.3. Official Identity

2.9. Workspace

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 2

2.10. Multi-use Reply Blocks

3. Layer Overview

3.1. Transport Layer

3.2. Blending Layer

3.3. Routing Layer

3.4. Accounting Layer

4. Vortex Message

4.1. Overview

4.2. Message Prefix Block (MPREFIX)

4.3. Inner Message Block

4.3.1. Control Prefix Block

4.3.2. Control Blocks

4.3.2.1. Header Block

4.3.2.2. Routing Block

4.3.3. Payload Block

5. General notes

5.1. Supported Symmetric Ciphers

5.2. Supported Asymmetric Ciphers

5.3. Supported MACs

5.4. Supported Paddings

5.5. Supported Modes

6. Blending

6.1. Blending in Attachments

6.1.1. PLAIN embedding into attachments

6.1.2. F5 embedding into attachments

6.2. Blending into an SMTP layer

6.3. Blending into an XMPP layer

7. Routing

7.1. Vortex Message Processing

7.1.1. Processing of incoming Vortex Messages

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 3

7.1.2. Processing of Routing Blocks in the Workspace

7.1.3. Processing of Outgoing Vortex Messages

7.2. Header Requests

7.2.1. Request New Ephemeral Identity

7.2.2. Request Message Quota

7.2.3. Request Increase of Message Quota

7.2.4. Request Transfer Quota

7.2.5. Query Quota

7.2.6. Request Capabilities

7.2.7. Request Nodes

7.2.8. Request Identity Replace

7.3. Special Blocks

7.3.1. Error Block

7.3.2. Requirement Block

7.3.2.1. Puzzle Requirement

7.3.2.2. Payment Requirement

7.4. Routing Operations

7.4.1. Mapping Operation

7.4.2. Split and Merge Operations

7.4.3. Encrypt and Decrypt Operations

7.4.4. Add and Remove Redundancy Operations

7.4.4.1. Padding Operation

7.4.4.2. Apply Matrix

7.4.4.3. Encrypt Target Block

7.5. Processing of Vortex Messages

8. Accounting

8.1. Accounting Operations

8.1.1. Time-Based Garbage Collection

8.1.2. Time-Based Routing Initiation

8.1.3. Routing Based Quota Updates

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 4

1. Introduction

Anonymisation is hard to achieve. Most previous attempts relied on either trust in a

dedicated infrastructure or a specialized networking protocol.

Instead of defining a transport layer, Vortex piggybacks on other transport protocols. A

blending layer embeds Vortex messages (VortexMessage) into ordinary messages of the

respective transport protocol. This layer picks up the messages, passes them to a routing

layer, which applies local operations to the messages, and resends the new message

chunks to the next recipients.

A processing node learns as little as possible from the message or the network utilized due

to the nature of the operations processed. The 'onionized' structure of the protocol makes it

impossible to follow the trace of a message without having control over the processing

node.

MessageVortex is a protocol which allows sending and receiving messages by using a

routing block instead of a destination address. With this approach, the sender has full

control over all parameters of the message flow.

8.1.4. Routing Based Authorization

8.1.5. Ephemeral Identity Creation

9. Acknowledgments

10. IANA Considerations

11. Security Considerations

12. References

12.1. Normative References

12.2. Informative References

Appendix A. The ASN.1 schema for Vortex messages

A.1. The main VortexMessageBlocks

A.2. The VortexMessage Ciphers Structures

A.3. The VortexMessage Replies Structures

A.4. The VortexMessage Requirements Structures

A.5. The VortexMessage Helpers Structures

A.6. The VortexMessage Additional Structures

Author's Address

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 5

A message is split and reassembled during transmission. Chunks of the message may carry

redundant information to avoid service interruptions during transit. Decoy and message

traffic are not differentiable as the nature of the addRedundancy operation allows each

generated portion to be either message or decoy. Therefore, any routing node is unable to

distinguish between message and decoy traffic.

After processing, a potential receiver node knows if the message is destined for it (by

creating a chunk with ID 1) or other nodes . Due to missing keys, no other node may

perform this processing.

This RFC begins with general terminology (see Section 2) followed by an overview of the

process (see Section 3). The subsequent sections describe the details of the protocol.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be

interpreted as described in .

1.2. Protocol Specification

Appendix A specifies all relevant parts of the protocol in ASN.1 (see and

). The blocks are DER encoded, if not otherwise specified.

1.3. Number Specification

All numbers within this document are, if not suffixed, decimal numbers. Numbers suffixed

with a small letter 'h' followed by two hexadecimal digits are octets written in hexadecimal.

For example, a blank ASCII character (' ') is written as 20h and a capital 'K' in ASCII as 4Bh.

[RFC2119]

[CCITT.X680.2002]

[CCITT.X208.1988]

2. Entities Overview

The following entities used in this document are defined below.

2.1. Node

The term 'node' describes any computer system connected to other nodes, which support

the MessageVortex Protocol. A 'node address' is typically an email address, an XMPP

address or other transport protocol identity supporting the MessageVortex protocol. Any

address SHOULD include a public part of an 'identity key' to allow messages to transmit

safely. One or more addresses MAY belong to the same node.

2.1.1. Blocks

A 'block' represents an ASN.1 sequence in a transmitted message. We embed messages in

the transport protocol, and these messages may be of any size.

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 6

2.1.2. NodeSpec

A nodeSpec block, as specified in Appendix A.5, expresses an addressable node in a unified

format. The nodeSpec contains a reference to the routing protocol, the routing address

within this protocol, and the keys required for addressing the node. This RFC specifies

transport layers for XMPP and SMTP. Additional transport layers will require an extension to

this RFC.

2.1.2.1. NodeSpec for SMTP nodes

An alternative address representation is defined that allows a standard email client to

address a Vortex node. An alternative representation SHOULD be supported as defined

below with smtpAlternateSpec (its specification is noted in ABNF as in). For

applications with QR code support, an implementation SHOULD use the smtpUrl

representation.

This representation does not support quoted local part SMTP addresses.

[RFC5234]

localPart = <local part of address>

domain = <domain part of address>

email = localPart "@" domain

keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>

smtpAlternateSpec = localPart ".." keySpec ".." domain "@localhost"

smtpUrl = "vortexsmtp://" smtpAlternateSpec

2.1.2.2. NodeSpec for XMPP nodes

Typically, a node specification follows the ASN.1 block NodeSpec. For support of XMPP

clients, an implementation SHOULD support the jidAlternateSpec as noted below (its

specification is noted in ABNF as in).[RFC5234]

localPart = <local part of address>

domain = <domain part of address>

resourcePart = <resource part of the address>

jid = localPart "@" domain ["/" resourcePart]

keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>;

jidAlternateSpec = localPart ".." keySpec ".."

 domain "@localhost" ["/" resourcePart]

jidUrl = "vortexxmpp://" jidAlternateSpec

2.2. Peer Partners

Two or more message sending or receiving entities are referred to as 'peer partners.' One

partner sends a message, and all others receive one or more messages. Peer partners are

message specific, and each partner always connects directly to a node.

2.3. Encryption keys

Several keys are required for a Vortex message. For identities and ephemeral identities (see

below), we use asymmetric keys, while symmetric keys are used for message encryption.

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 7

2.3.1. Identity Keys

Every participant of the network includes an asymmetric key, which SHOULD be either an

EC key with a minimum length of 384 bits or an RSA key with a minimum length of 2048

bits.

The public key must be known by all parties writing to or through the node.

2.3.2. Peer Key

Peer keys are symmetrical keys transmitted with a Vortex message and are always known

to the node sending the message, the node receiving the message, and the creator of the

routing block.

A peer key is included in the Vortex message as well as the building instructions for

subsequent Vortex messages (see RoutingCombo in Appendix A).

2.3.3. Sender Key

The sender key is a symmetrical key protecting the identity and routing block of a Vortex

message. It is encrypted with the receiving peer key and prefixed to the identity block. This

key further decouples the identity and processing information from the previous key.

A sender key is known to only one peer of a Vortex message and the creator of the routing

block.

2.4. Vortex Message

The term 'Vortex message' represents a single transmission between two routing layers. A

message adapted to the transport layer by the blending layer is called a 'blended Vortex

message' (see Section 3).

A complete Vortex message contains the following items:

The peer key, which is encrypted with the host key of the node and stored in a

prefixBlock, protects the inner Vortex message (innerMessageBlock).

The small padding guarantees that a replayed routing block with different content does

not look the same.

The sender key, also encrypted with the host key of the node, protects the identity and

routing block.

The identity block, protected by the sender key, contains information about the

ephemeral identity of the sender, replay protection information, header requests

(optional), and a requirement reply (optional).

The routing block, protected by the sender key, contains information on how

subsequent messages are processed, assembled, and blended.

The payload block, protected by the peer key, contains payload chunks for processing.

•

•

•

•

•

•

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 8

2.5. Message

A message is content to be transmitted from a single sender to a recipient. The sender uses

a routing block either built itself or provided by the receiver to perform the transmission.

While a message may be anonymous, there are different degrees of anonymity as

described by the following.

If the sender of a message is not known to anyone else except the sender, then this

degree is referred to as 'sender anonymity.'

If the receiver of a message is not known to anyone else except the receiver, then the

degree is 'receiver anonymity.'

If an attacker is unable to determine the content, original sender, and final receiver,

then the degree is considered 'third-party anonymity.'

If a sender or a receiver may be determined as one of a set of <k> entities, then it is

referred to as k-anonymity .

A message is always MIME encoded as specified in .

•

•

•

•

[KAnon]

[RFC2045]

2.6. Key and MAC specifications and usage

MessageVortex uses a unique encoding for keys that is designed to be small and flexible

while maintaining a specific base structure.

The following key structures are available:

SymmetricKey

AsymmetricKey

MAC does not require a complete structure containing specs and values, and only a

MacAlgorithmSpec is available. The following sections outline the constraints for specifying

parameters of these structures where a node MUST NOT specify any parameter more than

once.

If a crypto mode is specified requiring an IV, then a node MUST provide the IV when

specifying the key.

•

•

2.6.1. Asymmetric Keys

Nodes use asymmetric keys for identifying peer nodes (i.e., identities) and encrypting

symmetric keys (for subsequent de-/encryption of the payload or blocks). All asymmetric

keys MUST contain a key type specifying a strictly-normed key. Also, they MUST contain a

public part of the key encoded as an X.509 container and a private key specified in PKCS#8

wherever possible.

RSA and EC keys MUST contain a keySize parameter. All asymmetric keys SHOULD contain

a padding parameter, and a node SHOULD assume PKCS#1 if no padding is specified.

NTRU specification MUST provide the parameters "n", "p", and "q".

2.6.2. Symmetric Keys

Nodes use symmetric keys for encrypting payloads and control blocks. These symmetric

keys MUST contain a key type specifying a key, which MUST be in an encoded form.

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 9

A node MUST provide a keySize parameter if the key (or, equivalently, the block) size is not

standardized or encoded in the name. All symmetric key specifications MUST contain a

mode and padding parameter. A node MAY list multiple padding or mode parameters in a

ReplyCapability block to offer the recipient a free choice.

2.7. Transport Address

The term 'transport address' represents the token required to address the next immediate

node on the transport layer. An email transport layer would have SMTP addresses, such as

'vortex@example.com,' as the transport address.

2.8. Identity

2.8.1. Peer Identity

The peer identity may contain the following information of a peer partner.

A transport address (always) and the public key of this identity, given there is no

recipient anonymity.

A routing block, which may be used to contact the sender. If striving for recipient

anonymity, then this block is required.

The private key, which is only known by the owner of the identity.

•

•

•

2.8.2. Ephemeral Identity

Ephemeral identities are temporary identities created on a single node. These identities

MUST NOT relate to another identity on any other node so that they allow bookkeeping for a

node. Each ephemeral identity has a workspace assigned, and may also have the following

items assigned.

An asymmetric key pair to represent the identity.

A validity time of the identity.

•

•

2.8.3. Official Identity

An official identity may have the following items assigned.

Routing blocks used to reply to the node.

A list of assigned ephemeral identities on all other nodes and their projected quotas.

A list of known nodes with the respective node identity.

•

•

•

2.9. Workspace

Every official or ephemeral identity has a workspace, which consists of the following

elements.

Zero or more routing blocks to be processed.

Slots for a payload block sequentially numbered. Every slot:

MUST contain a numerical ID identifying the slot.

MAY contain payload content.

If a block contains payload, then it MUST contain a validity period.

•

•

◦

◦

◦

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 10

2.10. Multi-use Reply Blocks

'Multi-use reply blocks' (MURB) are a special type routing block sent to a receiver of a

message or request. A sender may use such a block one or several times to reply to the

sender linked to the ephemeral identity, and it is possible to achieve sender anonymity

using MURBs.

3. Layer Overview

The protocol is designed in four layers as shown in Figure 1.

Every participating node MUST implement the layer's blending, routing, and accounting.

There MUST be at least one incoming and one outgoing transport layer available to a node.

All blending layers SHOULD connect to the respective transport layers for sending and

receiving packets.

Figure 1: Layer overview

+--+

| Vortex Node |

| +--+ |

| | Accounting | |

| |__| |

| |

| +--+ |

| | Routing | |

| |__| |

| |

| +---------------------------+ +--------------------------------+ |

| | Blending | | Blending | |

| |___________________________| |________________________________| |

|__|

 +---------------------------+ +--------------+ +---------------+

 | Transport | | Transport in | | Transport out |

 |___________________________| |______________| |_______________|

3.1. Transport Layer

The transport layer transfers the blended Vortex messages to the next vortex node and

stores it until the next blending layer picks up the message.

The transport layer infrastructure SHOULD NOT be specific to anonymous communication

and should contain significant portions of non-Vortex traffic.

3.2. Blending Layer

The blending layer embeds blended Vortex Message into the transport layer data stream

and extracts the packets from the transport layer.

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 11

4. Vortex Message

4.1. Overview

Figure 2 shows a Vortex message. The enclosed sections denote encrypted blocks, and the

three or four letter abbreviations denote the key required for decryption. The abbreviation

k_h stands for the asymmetric host key, and sk_p is the symmetric peer key. The receiving

node obtains this key by decrypting MPREFIX with its host key k_h. Then, sk_s is the

symmetric sender key. When decrypting the MPREFIX block, the node obtains this key. The

sender key protects the header and routing blocks by guaranteeing the node assembling

the message does not know about upcoming identities, operations, and requests. The peer

key protects the message, including its structure, from third-party observers.

4.2. Message Prefix Block (MPREFIX)

The PrefixBlock contains a symmetrical key as defined in Appendix A.1 and is encrypted

using the host key of the receiving peer host. The symmetric key utilized MUST be from the

set advertised by a CapabilitiesReplyBlock (see Section 7.2.6). A node MAY choose any

parameters omitted in the CapabilitiesReplyBlock freely, unless stated otherwise in Section

7.2.6. A node SHOULD avoid sending unencrypted PrefixBlocks, and a prefix block MUST

contain the same forward-secret as the other prefix as well as the routing and header

blocks. A host MAY reply to a message with an unencrypted message block, but any reply to

a message SHOULD be encrypted.

3.3. Routing Layer

The routing layer expands information contained in MessageVortex packets, processes

them, and passes generated packets to the respective blending layer.

3.4. Accounting Layer

The accounting layer tracks all ephemeral identities authorized to use a MessageVortex

node, and verifies the available quotas to an ephemeral identity.

Figure 2: Vortex message overview

+-+---+-+-+---+-+---+-+-+---+-+-+---+-+-------+-+

| | | | | | | C | | | | | | R | | | |

| | | | | | | P | | | H | | | O | | | |

| | M | | | P | | R | | | E | | | U | | P | |

| | P | | | A | | E | | | A | | | T | | A | |

| | R | | | D | | F | | | D | | | I | | Y | |

| | E | | | D | | I | | | E | | | N | | L | |

| | F | | | I | | X | | | R | | | G | | O | |

| | I | | | N | +---+ | |___| | |___| | A | |

| | X | | | G | k_h | sk_s | sk_s | D | |

| |___| | |___|_______|_______|_______|_______| |

| k_h | sk_p |

|_______|_______________________________________|

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 12

The sender MUST choose a key which may be encrypted with the host key in the respective

PrefixBlock using the padding advertised by the CapabilitiesReplyBlock.

4.3. Inner Message Block

A node MUST always encrypt an InnerMessageBlock with the symmetric key of the

PrefixBlock to hide the inner structure of the message. The InnerMessageBlock SHOULD

always accommodate four or more payload chunks.

An InnerMessageBlock always starts with a padding block, which guarantees that when

using the same routing block multiple times, its binary structure is not repeated throughout

the messages of the same routing block. The padding MUST be the first 16 bytes of the first

four non-empty payload chunks (i.e., PayloadChunks). If a payload chunk is shorter than 16

bytes, then the content of the padding SHOULD be filled with zero-valued bytes (00h) from

the end up to the required number of bytes. An inner message block (i.e.,

InnerMessageBlock) SHOULD contain at least four payload chunks with a size of 16 bytes or

larger. If there are less than four payload chunks, then the padding MUST contain a random

sequence of 16 bytes for those missing, and a node MUST NOT reuse random sequences.

An InnerMessageBlock contains so-called forwardSecrets, a random number that MUST be

the same in the HeaderBlock, RoutingBlock, and PrefixBlock. Nodes receiving messages

containing non-matching forwardSecrets MUST discard these messages and SHOULD NOT

send an error message. If a node receives too many messages with illegal forward secrets,

then the node SHOULD delete this identity. A node receiving a message with a broken

forwardSecret SHOULD treat the block as a replayed block and discard it regardless of a

valid forwardSecret. Any replay within the replay protection time MUST be discarded

regardless if the forward secret is correct.

4.3.1. Control Prefix Block

Control prefix (CPREFIX) and MPREFIX blocks share the same structure and logic as well as

containing the sender key sk_s. If an MPREFIX block is unencrypted, a node MAY omit the

CPREFIX block. An omitted CPREFIX block results in unencrypted control blocks (e.g., the

HeaderBlock and RoutingBlock).

A prefix block MUST contain the same forwardSecret as the other prefix, the routing block,

and header block.

4.3.2. Control Blocks

The control blocks of the HeaderBlock and a RoutingBlock contain the core information to

process the payload.

4.3.2.1. Header Block

The header block (see HeaderBlock in Appendix A) contains the following information.

It MUST contain the local ephemeral identity of the routing block builder.

It MAY contain header requests.

It MAY contain the solution to a PuzzleRequired block previously opposed in a header

request.

The list of header requests MAY be one of the following.

Empty.

•

•

•

•

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 13

Contain a single identity create request (HeaderRequestIdentity).

Contain a single increase quota request.

If a header block violates these rules, then a node MUST NOT reply to any header request.

The payload and routing blocks SHOULD still be added to the workspace and processed if

the message quota is not exceeded.

4.3.2.2. Routing Block

The routing block (see RoutingBlock in Appendix A) contains the following information.

It MUST contain a serial number uniquely identifying the routing block of this user. The

serial number MUST be unique during the lifetime of the routing block.

It MUST contain the same forward secret as the two prefix blocks and the header block.

It MAY contain assembly and processing instructions for subsequent messages.

It MAY contain a reply block for messages assigned to the owner of the identity.

4.3.3. Payload Block

Each InnerMessageBlock with routing information SHOULD contain at least four

PayloadChunks.

5. General notes

The MessageVortex protocol is a modular protocol that allows the use of different

encryption algorithms. For its operation, a Vortex node SHOULD always support at least two

distinct types of algorithms, paddings or modes such that they rely on two mathematical

problems.

5.1. Supported Symmetric Ciphers

A node MUST support the following symmetric ciphers.

AES128 (see for AES implementation details).

AES256.

CAMELLIA128 (see Chapter 3 for Camellia implementation details).

CAMELLIA256.

A node SHOULD support any standardized key larger than the smallest key size.

A node MAY support Twofish ciphers (see).

5.2. Supported Asymmetric Ciphers

A node MUST support the following asymmetric ciphers.

RSA with key sizes greater or equal to 2048 ().

ECC with named curves secp384r1, sect409k1 or secp521r1 (see).

•

•

•

•

•

•

• [FIPS-AES]

•

• [RFC3657]

•

[TWOFISH]

• [RFC8017]

• [SEC1]

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 14

5.3. Supported MACs

A node MUST support the following Message Authentication Codes (MAC).

SHA3-256 (see for SHA implementation details).

RipeMD160 (see for RIPEMD implementation details).

A node SHOULD support the following MACs.

SHA3-512.

RipeMD256.

RipeMD512.

5.4. Supported Paddings

A node MUST support the following paddings specified in .

PKCS1 (see).

PKCS7 (see).

5.5. Supported Modes

A node MUST support the following modes.

CBC (see) such that the utilized IV must be of equal length as the key.

EAX (see).

GCM (see).

NONE (only used in special cases, see Section 11).

A node SHOULD NOT use the following modes.

NONE (except as stated when using the addRedundancy function).

ECB.

A node SHOULD support the following modes.

CTR ().

CCM ().

OCB ().

OFB ().

• [ISO-10118-3]

• [ISO-10118-3]

•

•

•

[RFC8017]

• [RFC8017]

• [RFC5958]

• [RFC1423]

• [EAX]

• [RFC5288]

•

•

•

• [RFC3686]

• [RFC3610]

• [RFC7253]

• [MODES]

6. Blending

Each node supports a fixed set of blending capabilities, which may be different for incoming

and outgoing messages.

The following sections describe the blending mechanism. There are currently two blending

layers specified with one for the Simple Mail Transfer Protocol (SMTP, see) and

the second for the Extensible Messaging and Presence Protocol (XMPP, see). All

nodes MUST at least support "encoding=plain:0,256".

[RFC5321]

[RFC6120]

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 15

6.1. Blending in Attachments

There are two types of blending supported when using attachments.

Plain binary encoding with offset (PLAIN).

Embedding with F5 in an image (F5).

A node MUST support PLAIN blending for reasons of interoperability whereas a node MAY

support blending using F5.

•

•

6.1.1. PLAIN embedding into attachments

A blending layer embeds a VortexMessage in a carrier file with an offset for PLAIN blending.

For replacing a file start, a node MUST use the offset 0. The routing node MUST choose the

payload file for the message, and SHOULD use a credible payload type (e.g., MIME type)

with high entropy. Furthermore, it SHOULD prefix a valid header structure to avoid easy

detection of the Vortex message. Finally, a routing node SHOULD use a valid footer, if any,

to a payload file to improve blending.

The blended Vortex message is embedded in one or more message chunks, each starting

with two variable length unsigned integers. The integer starts with the LSB, and if bit 7 is

set, then there is another byte following. There cannot be more than four bytes where the

last, fourth byte is always 8 bit. The three preceding bytes have a payload of seven bits

each, which results in a maximum number of 2^29 bits. The first of the extracted numbers

reflects the number of bytes in the chunk after the length descriptors. The second contains

the number of bytes to be skipped to reach the next chunk. There exists no "last chunk"

indicator.

A node SHOULD offer at least one PLAIN blending method and MAY offer multiple offsets for

incoming Vortex messages.

A plain blending is specified as the following.

position:00h 02h 04h 06h 08h ... 400h 402h 404h 406h 408h 40Ah

value: 01 02 03 04 05 06 07 08 09 ... 01 05 0A 0B 0C 0D 0E 0F f0 03 12 13

Embedding: "(plain:1024)"

Result: 0A 13 (+ 494 omited bytes; then skip 12 bytes to next chunk)

plainEncoding = "("plain:" <numberOfBytesOfOffset>

 ["," <numberOfBytesOfOffset>]* ")"

6.1.2. F5 embedding into attachments

For F5, a blending layer embeds a Vortex message into a jpeg file according to . The

password for blending may be public, and a routing node MAY advertise multiple passwords.

The use of F5 adds approximately tenfold transfer volume to the message. A routing block

building node SHOULD only use F5 blending where appropriate.

A blending in F5 is specified as the following.

[F5]

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 16

Commas and backslashes in passwords MUST be escaped with a backslash whereas closing

brackets are treated as normal password characters unless they are the final character of

the encoding specification string.

f5Encoding = "(F5:" <passwordString> ["," <PasswordString>]* ")"

6.2. Blending into an SMTP layer

Email messages with content MUST be encoded with Multipurpose Internet Mail Extensions

(MIME) as specified in . All nodes MUST support BASE64 encoding and MUST test

all sections of a MIME message for the presence of a VortexMessage.

A vortex message is present if a block containing the peer key at the known offset of any

MIME part decodes correctly.

A node SHOULD support SMTP blending for sending and receiving. For sending SMTP, the

specification in must be used. TLS layers MUST always be applied when

obtaining messages using POP3 (as specified in and) or IMAP (as

specified in). Any SMTP connection MUST employ a TLS encryption when passing

credentials.

[RFC2045]

[RFC5321]

[RFC1939] [RFC2595]

[RFC3501]

6.3. Blending into an XMPP layer

For interoperability, an implementation SHOULD provide XMPP blending.

Blending into XMPP traffic is performed using the extension of the XMPP

protocol.

PLAIN and F5 blending are acceptable for this transport layer.

[XEP-0231]

7. Routing

7.1. Vortex Message Processing

7.1.1. Processing of incoming Vortex Messages

An incoming message is considered initially unauthenticated. A node should consider a

VortexMessage as authenticated as soon as the ephemeral identity is known and is not

temporary.

For an unauthenticated message, the following rules apply.

A node MUST ignore all Routing blocks.

A node MUST ignore all Payload blocks.

A node SHOULD accept identity creation requests in unauthenticated messages.

A node MUST ignore all other header requests except identity creation requests.

A node MUST ignore all identity creation requests belonging to an existing identity.

•

•

•

•

•

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 17

A message is considered authenticated as soon as the identity used in the header block is

known and not temporary. A node MUST NOT treat a message as authenticated if the

specified maximum number of replays is reached. For authenticated messages, the

following rules apply.

A node MUST ignore identity creation requests.

A node MUST replace the current reply block with the reply block provided in the routing

block, if any. The node MUST keep the reply block if none is provided.

A node SHOULD process all header requests.

A node SHOULD add all routing blocks to the workspace.

A node SHOULD add all payload blocks to the workspace.

A routing node MUST decrement the message quota by one if a received message is

authenticated, valid, and contains at least one payload block. If a message is identified as

duplicate according to the reply protection, then a node MUST NOT decrement the message

quota.

Reflected in pseudo code, the message processing works according to the following.

•

•

•

•

•

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 18

function incomming_message(VortexMessage blendedMessage) {

 try{

 msg = unblend(blendedMessage);

 if(not msg) {

 // Abort processing

 throw exception("no embedded message found")

 } else {

 hdr = get_header(msg)

 if(not known_identity(hdr.identity) {

 if(get_requests(hdr) contains HeaderRequestIdentity) {

 create_new_identity(hdr).set_temporary(true)

 send_message(create_requirement(hdr))

 } else {

 // Abort processing

 throw exception("identity unknown")

 }

 } else {

 if(is_duplicate_or_replayed(msg)) {

 // Abort processing

 throw exception "duplicate or replayed message")

 } else {

 if(get_accounting(hdr.identity).is_temporary()) {

 if(not verify_requirement(hdr.identity, msg)) {

 get_accounting(hdr.identity).set_temporary(false)

 }

 }

 if(get_accounting(hdr).is_temporary()) {

 throw exception("no processing on temporary identity")

 }

 // Message authenticated

 get_accounting(hdr.identity).register_for_replay_protection(msg)

 if(not verify_mtching_forward_secrets(msg)) {

 throw exception("forward secret missmatch")

 }

 if(contains_payload(msg)) {

 if(get_accounting(hdr.identity).decrement_message_quota()) {

 while index,nextPayloadBlock = get_next_payload_block(msg) {

 add_workspace(header.identity, index, nextPayloadBlock)

 }

 while nextRoutingBlock = get_next_routing_block(msg) {

 add_workspace(hdr.identity, add_routing(nextRoutingBlock))

 }

 process_reserved_mapping_space(msg)

 while nextRequirement = get_next_requirement(hdr) {

 add_workspace(hdr.identity, nextRequirement)

 }

 } else {

 throw exception("Message quota exceeded")

 }

 }

 }

 }

 } catch(exception e) {

 // Message processing failed

 throw e;

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 19

 }

}

7.1.2. Processing of Routing Blocks in the Workspace

A routing workspace consists of the following items.

The identity it links to, which determines the lifetime of the workspace.

The linked routing combos (RoutingCombo).

A payload chunk space with the following multiple subspaces available:

ID 0 represents a message to be embedded (when reading) or a message to be

extracted to the user (when written).

ID 1 to ID maxPayloadBlocks represent the payload chunk slots in the target

message.

All blocks between ID maxPayloadBlocks + 1 to ID 32767 belong to a temporary

routing block-specific space.

All blocks between ID 32768 to ID 65535 belong to a shared space available to all

operations of the identity.

The accounting layer typically triggers processing and represents either a cleanup action or

a routing event. A cleanup event deletes the following information from all workspaces.

All processed routing combos.

All routing combos with expired usagePeriod.

All payload chunks exceeding the maxProcess time.

All expired objects.

All expired puzzles.

All expired identities.

All expired replay protections.

Note that maxProcessTime reflects the number of seconds since the arrival of the last octet

of the message at the transport layer facility. A node SHOULD NOT take additional

processing time (e.g., for anti-UBE or anti-virus) into account.

The accounting layer triggers routing events occurring at least the minProcessTime after

the last octet of the message arrived at the routing layer. A node SHOULD choose the latest

possible moment at which the peer node receives the last octet of the assembled message

before the maxProcessTime is reached. The calculation of this last point in time where a

message may be set SHOULD always assume that the target node is working. A sending

node SHOULD choose the time within these bounds randomly. An accounting layer MAY

trigger multiple routing combos in bulk to further obfuscate the identity of a single

transport message.

First, the processing node escapes the payload chunk at ID 0 if needed (e.g., a non-special

block starting with a backslash). Next, it executes all processing instructions of the routing

combo in the specified sequence. If an instruction fails, then the block at the target ID of

the operation remains unchanged. The routing layer proceeds with the subsequent

processing instructions by ignoring the error. For a detailed description of the operations,

see Section 7.4. If a node succeeds in building at least one payload chunk, then a

VortexMessage is composed and passed to the blending layer.

•

•

•

◦

◦

◦

◦

•

•

•

•

•

•

•

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 20

7.1.3. Processing of Outgoing Vortex Messages

The blending layer MUST compose a transport layer message according to the specification

provided in the routing combo. It SHOULD choose any decoy message or steganographic

carrier in such a way that the dead parrot syndrome, as specified in , is

avoided.

[DeadParrot]

7.2. Header Requests

Header requests are control requests for the anonymization system. Messages with

requests or replies only MUST NOT affect any quota.

7.2.1. Request New Ephemeral Identity

Requesting a new ephemeral identity is performed by sending a message containing a

header block with the new identity and an identity creation request

(HeaderRequestIdentity) to a node. The node MAY send an error block (see Section 7.3.1) if

it rejects the request.

If a node accepts an identity creation request, then it MUST send a reply. To accept a

request without a requirement, an accepting node MUST send back a special block

containing "no error." To accept a block with a requirement, an accepting node MUST send a

special block containing a requirement block.

A node SHOULD NOT reply to clear-text requests if the node does not want to officially

disclose its identity as a Vortex node. A node MUST reply with an error block if a valid

identity is used for the request.

7.2.2. Request Message Quota

Any valid ephemeral identity may request an increase of the current message quota to a

specific value at any time. The request MUST include a reply block in the header and may

contain other parts. If a requested value is lower than the current quota, then the node

SHOULD NOT refuse the quota request and SHOULD send a "no error" status.

A node SHOULD reply to a HeaderRequestIncreaseMessageQuota request (see Appendix A)

of a valid ephemeral identity. The reply MUST include a requirement, an error message or a

"no error" status message.

7.2.3. Request Increase of Message Quota

A node may request to increase the current message quota by sending a

HeaderRequestIncreaseMessageQuota request to the routing node. The value specified

within the node is the new quota. HeaderRequestIncreaseMessageQuota requests MUST

include a reply block, and a node SHOULD NOT use a previously sent MURB to reply.

If the requested quota is higher than the current quota, then the node SHOULD send a "no

error" reply. If the requested quota is not accepted, then the node SHOULD send a

requestedQuotaOutOfBand reply.

A node accepting the request MUST send a RequirementBlock or a "no error block."

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 21

7.2.4. Request Transfer Quota

Any valid ephemeral identity may request to increase the current transfer quota to a

specific value at any time. The request MUST include a reply block in the header and may

contain other parts. If a requested value is lower than the current quota, then the node

SHOULD NOT refuse the quota request and SHOULD send a "no error" status.

A node SHOULD reply to a HeaderRequestIncreaseTransferQuota request (see Appendix A)

of a valid ephemeral identity. The reply MUST include a requirement, an error message or a

"no error" status message.

7.2.5. Query Quota

Any valid ephemeral identity may request the current message and transfer quota. The

request MUST include a reply block in the header and may contain other parts.

A node MUST reply to a HeaderRequestQueryQuota request (see Appendix A), which MUST

include the current message quota and the current message transfer quota. The reply to

this request MUST NOT include a requirement.

7.2.6. Request Capabilities

Any node MAY request the capabilities of another node, which include all information

necessary to create a parseable VortexMessage. Any node SHOULD reply to any encrypted

HeaderRequestCapability.

A node SHOULD NOT reply to clear-text requests if the node does not want to officially

disclose its identity as a Vortex node. A node MUST reply if a valid identity is used for the

request, and it MAY reply to unknown identities.

7.2.7. Request Nodes

A node may ask another node for a list of routing node addresses and keys, which may be

used to bootstrap a new node and add routing nodes to increase the anonymization of a

node. The receiving node of such a request SHOULD reply with a requirement (e.g.,

RequirementPuzzleRequired).

A node MAY reply to a HeaderRequest request (see Appendix A) of a valid ephemeral

identity, and the reply MUST include a requirement, an error message or a "no error" status

message. A node MUST NOT reply to an unknown identity, and SHOULD always reply with

the same result set to the same identity.

7.2.8. Request Identity Replace

This request type allows a receiving node to replace an identity with the identity provided in

the message, and is required if an adversary manages to deny the usage of a node (e.g., by

deleting the corresponding transport account). Any sending node may recover from such an

attack by sending a valid authenticated message to another identity to provide the new

transport and key details.

A node SHOULD reply to such a request from a valid known identity, and the reply MUST

include an error message or a "no error" status message.

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 22

7.3. Special Blocks

Special blocks are payload messages that reflect messages from one node to another and

are not visible to the user. A special block starts with the character sequence '\special' (or

5Ch 73h 70h 65h 63h 69h 61h 6Ch) followed by a DER encoded special block

(SpecialBlock). Any non-special message decoding to ID 0 in a workspace starting with this

character sequence MUST escape all backslashes within the payload chunk with an

additional backslash.

7.3.1. Error Block

An error block may be sent as a reply where specified as a payload. The error block is

embedded in a special block and sent with any provided reply block. Error messages

SHOULD contain the serial number of the offending header block and MAY contain human-

readable text providing additional messages about the error.

7.3.2. Requirement Block

If a node is receiving a requirement block, then it MUST assume that the request block is

accepted, is not yet processed, and is to be processed if it meets the contained

requirement. A node MUST process a request as soon as the requirement is fulfilled, and

MUST resend the request as soon as it meets the requirement.

A node MAY reject a request, accept a request without a requirement, accept a request

upon payment (RequirementPaymentRequired) or accept a request upon solving a proof of

work puzzle (RequirementPuzzleRequired).

7.3.2.1. Puzzle Requirement

If a node requests a puzzle, then it MUST send a RequirementPuzzleRequired block. The

puzzle requirement is solved if the node receiving the puzzle is replying with a header block

that contains the puzzle block, and the hash of the encoded block begins with the bit

sequence mentioned in the puzzle within the period specified in the field 'valid.'

To solve a puzzle posed by a node, a Vortex Message needs to be sent to the requesting

node, which MUST contain a header block that includes the puzzle block and MUST have a

MAC fingerprint starting with the bit sequence as specified in the challenge. A node

calculates the MAC from the unencrypted DER encoded HeaderBlock with the algorithm

specified by the node. To meet this requirement, a node adds a proofOfWork field to the

HeaderBlock.

7.3.2.2. Payment Requirement

If a node requests a payment, then it MUST send a RequirementPaymentRequired block. As

soon as the requested fee is paid and confirmed, the requesting node MUST send a "no

error" status message. The usage period 'valid' describes the period during which the

payment may be carried out. A node MUST accept the payment if occurring within the

'valid' period but confirmed later. A node SHOULD return all unsolicited payments to the

sending address.

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 23

7.4. Routing Operations

Routing operations are contained in a routing block and processed upon arrival of a

message or when compiling a new message. All operations are reversible, and no operation

is available for generating decoy traffic, which may be used through encryption of an

unpadded block or the addRedundancy operation.

All payload chunk blocks inherit the validity time from the message routing combos as

arrival time + max(maxProcessTime).

When applying an operation to a source block, the resulting target block inherits the

expiration of the of the source block. When multiple expiration times exist, the one furthest

in the future is applied to the target block. If the operation fails, then the target expiration

remains unchanged.

7.4.1. Mapping Operation

The straightforward mapping operation is used in inOperations of a routing block to map

the routing block's specific blocks to a permanent workspace.

7.4.2. Split and Merge Operations

The split and merge operations allow splitting and recombining message chunks. A node

MUST adhere to the following constraints.

The operation must be applied at an absolute (measuring in bytes) or relative

(measured as a float value in the range 0>value>100) position.

All calculations must be performed according to and in 64-bit

precision.

If a relative value is a non-integer result, then a floor operation (i.e., cutting off all non-

integer parts) determines the number of bytes.

If an absolute value is negative, then the size represents the number of bytes counted

from the end of the message chunk.

If an absolute value is greater than the number of bytes in a block, then all bytes are

mapped to the respective target block, and the other target block becomes a zero byte-

sized block.

An operation MUST fail if relative values are equal to, or less than, zero. An operation MUST

fail if a relative value is equal to, or greater than, 100. All floating point operations must be

performed according to and in 64-bit precision.

•

• IEEE 754 [IEEE754]

•

•

•

[IEEE754]

7.4.3. Encrypt and Decrypt Operations

Encryption and decryption are executed according to the standards mentioned above. An

encryption operation encrypts a block symmetrically and places the result in the target

block. The parameters MUST contain IV, padding or cipher modes. An encryption operation

without a valid parameter set MUST fail.

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 24

7.4.4. Add and Remove Redundancy Operations

The addRedundancy and removeRedundancy operations are core to the protocol. They may

be used to split messages and distribute message content across multiple routing nodes.

The operation is separated into three steps.

Pad the input block to a multiple of the key block size in the resulting output blocks.

Apply a Vandermonde matrix with the given sizes.

Encrypt each resulting block with a separate key.

The following sections describe the order of the operations within an addRedundancy

operation. For a removeRedundancy operation, invert the functions and order. If the

removeRedundancy has more than the required blocks to recover the information, then it

should take only the required number beginning from the smallest. If a seed and PRNG are

provided, then the removeRedundancy operation MAY test any combination until recovery

is successful.

1.

2.

3.

7.4.4.1. Padding Operation

A processing node calculates the final length of all output blocks including redundancy. This

is done by L=roof((<input block size in bytes>+4)/<encryption block size in

bytes>)*<block size in bytes>. The block is prepended with a 32-bit unit length indicator in

bytes (little-endian). This length indicator, i, is calculated by i=<input block size in

bytes>*randominteger()*L. The remainder of the input block, up to length L, is padded with

random data. A routing block builder SHOULD specify a PRNG and a seed used for this

padding. If GF(16) is applied, then all numbers are treated as little-endian representations.

Only GF(8) and GF(16) are allowed fields.

For padding removal, the padding i at the start is first removed as a little-endian integer.

Second, the length of the output block is calculated by applying <output block size in

bytes>=i mod <input block size in bytes>

This padding guarantees that each resulting block matches the block size of the

subsequent encryption operation and does not require further padding.

7.4.4.2. Apply Matrix

Next, the input block is organized in a data matrix D of dimensions (inrows, incols) where

incols=(<number of data blocks>-<number of redundancy blocks>) and inrows=L/

(<number of data blocks>-<number of redundancy blocks>). The input block data is first

distributed in this matrix across, and then down.

Next, the data matrix D is multiplied by a Vandermonde matrix V with its number of rows

equal to the incols calculated and columns equal to the <number of data blocks>. The

content of the matrix is formed by v(i,j)=pow(i,j), where i reflects the row number starting

at 0, and j reflects the column number starting at 0. The calculations described must be

carried out in the GF noted in the respective operation to be successful. The completed

operation results in matrix A.

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 25

7.4.4.3. Encrypt Target Block

Each row vector of A is a new data block encrypted with the corresponding encryption key

noted in the keys of the addRedundancyOperation. If there are not enough keys available,

then the keys used for encryption are reused from the beginning after the final key is used.

A routing block builder SHOULD provide enough keys so that all target blocks may be

encrypted with a unique key. All encryptions SHOULD NOT use padding.

7.5. Processing of Vortex Messages

The accounting layer triggers processing according to information contained in a routing

block in the workspace. All operations MUST be executed in the sequence provided in the

routing block, and any failing operation must leave the result block unmodified.

All workspace blocks resulting in IDs of 1 to maxPayloadBlock are then added to the

message and passed to the blending layer with appropriate instructions.

8. Accounting

8.1. Accounting Operations

The accounting layer has two types of operations.

Time-based (e.g., cleanup jobs and initiation of routing).

Routing triggered (e.g., updating quotas, authorizing operations, and pickup of

incoming messages).

Implementations MUST provide sufficient locking mechanisms to guarantee the integrity of

accounting information and the workspace at any time.

•

•

8.1.1. Time-Based Garbage Collection

The accounting layer SHOULD keep a list of expiration times. As soon as an entry (e.g.,

payload block or identity) expires, the respective structure should be removed from the

workspace. An implementation MAY choose to remove expired items periodically or when

encountering them during normal operation.

8.1.2. Time-Based Routing Initiation

The accounting layer MAY keep a list of when a routing block is activated. For improved

privacy, the accounting layer should use a slotted model where, whenever possible,

multiple routing blocks are handled in the same period, and the requests to the blending

layers are mixed between the transactions.

8.1.3. Routing Based Quota Updates

A node MUST update quotas on the respective operations. For example, a node MUST

decrease the message quota before processing routing blocks in the workspace and after

the processing of header requests.

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 26

8.1.4. Routing Based Authorization

The transfer quota MUST be checked and decreased by the number of data bytes in the

payload chunks after an outgoing message is processed and fully assembled. The message

quota MUST be decreased by one on each routing block triggering the assembly of an

outgoing message.

8.1.5. Ephemeral Identity Creation

Any packet may request the creation of an ephemeral identity. A node SHOULD NOT accept

such a request without a costly requirement, since the request includes a lifetime of the

ephemeral identity. The costs for creating the ephemeral identity SHOULD increase if a

longer lifetime is requested.

9. Acknowledgments

Thanks go to my family who supported me with patience and countless hours as well as to

Mark Zeman for his feedback challenging my thoughts and peace.

10. IANA Considerations

This memo includes no request to IANA.

Additional encryption algorithms, paddings, modes, blending layers or puzzles MUST be

added by writing an extension to this or a subsequent RFC. For testing purposes, IDs above

1,000,000 should be used.

11. Security Considerations

The MessageVortex protocol should be understood as a toolset instead of a fixed product.

Depending on the usage of the toolset, anonymity and security are affected. For a detailed

analysis, see .

The primary goals for security within this protocol rely on the following focus areas.

Confidentiality

Integrity

Availability

Anonymity

Third-party anonymity

Sender anonymity

Receiver anonymity

These aspects are affected by the usage of the protocol, and the following sections provide

additional information on how they impact the primary goals.

The Vortex protocol does not rely on any encryption of the transport layer since Vortex

messages are already encrypted. Also, confidentiality is not affected by the protection

mechanisms of the transport layer.

[MVAnalysis]

•

•

•

•

◦

◦

◦

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 27

If a transport layer supports encryption, then a Vortex node SHOULD use it to improve the

privacy of the message.

Anonymity is affected by the inner workings of the blending layer in many ways. A Vortex

message cannot be read by anyone except the peer nodes and routing block builder. The

presence of a Vortex node message may be detected through the typical high entropy of an

encrypted file, broken structures of a carrier file, a meaningless content of a carrier file or

the contextless communication of the transport layer with its peer partner. A blending layer

SHOULD minimize the possibility of simply detection by minimizing these effects.

A blending layer SHOULD use carrier files with high compression or encryption. Carrier files

SHOULD NOT have inner structures such that the payload is comparable to valid content. To

achieve undetectability by a human reviewer, a routing block builder should use F5 instead

of PLAIN blending. This approach, however, increases the protocol overhead by

approximately tenfold.

The two layers of 'routing' and 'accounting' have the deepest insight into a Vortex

message's inner working. Each knows the immediate peer sender and the peer recipients of

all payload chunks. As decoy traffic is generated by combining chunks and applying

redundancy calculations, a node can never know if a malfunction (e.g., during a recovery

calculation) was intended. Therefore, a node is unable to distinguish a failed transaction

from a terminated transaction as well as content from decoy traffic.

A routing block builder SHOULD follow the following rules to not compromise a Vortex

message's anonymity.

All operations applied SHOULD be credibly involved in a message transfer.

A sufficient subset of the result of an addRedundancy operation should always be sent

to peers to allow recovery of the data built.

The anonymity set of a message should be sufficiently large to avoid legal prosecution

of all jurisdictional entities involved, even if a certain amount of the anonymity set

cooperates with an adversary.

Encryption and decryption SHOULD follow normal usage whenever possible by avoiding

the encryption of a block on a node with one key and decrypting it with a different key

on the same or adjacent node.

Traffic peaks SHOULD be uniformly distributed within the entire anonymity set.

A routing block SHOULD be used for a limited number of messages. If used as a

message block for the node, then it should be used only once. A block builder SHOULD

use the HeaderRequestReplaceIdentity block to update the reply to routing blocks

regularly. Implementers should always remember that the same routing block is

identifiable by its structure.

An active adversary cannot use blocks from other routing block builders. While the

adversary may falsify the result by injecting an incorrect message chunk or not sending a

message, such message disruptions may be detected by intentionally routing information

to the routing block builder'node. If the Vortex message does not carry the information

expected, then the node may safely assume that one of the involved nodes is misbehaving.

A block building node MAY calculate reputation for involved nodes over time and MAY build

redundancy paths into a routing block to withstand such malicious nodes.

•

•

•

•

•

•

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 28

[CCITT.X208.1988]

[CCITT.X680.2002]

[EAX]

[F5]

[FIPS-AES]

[IEEE754]

[ISO-10118-3]

[MODES]

[RFC1423]

[RFC2119]

[RFC3610]

[RFC3657]

[RFC3686]

12. References

12.1. Normative References

,

,

, November 1998.

,

,

November 2002.

, , and , ,

2011.

,

, 24 October 2001.

,

, November 2011.

, , 29 August

2008.

,

, March 2004.

,

, December

2001.

,

, , ,

February 1993, .

, ,

, , , March 1997,

.

, , and , ,

, , September 2003,

.

 and ,

, , ,

January 2004, .

,

, ,

, January 2004, .

Receiver anonymity is at risk if the handling of the message header and content is not done

with care. An attacker might send a bugged message (e.g., with a DKIM or DMARC header)

to deanonymize a recipient. Careful attention is required when handling anything other

than local references when processing, verifying or rendering a message.

International Telephone and Telegraph Consultative Committee

"Specification of Abstract Syntax Notation One (ASN.1)" CCITT

Recommendation X.208

International Telephone and Telegraph Consultative Committee

"Abstract Syntax Notation One (ASN.1): Specification of basic notation"

Bellare, M. Rogaway, P. D. Wagner "The EAX mode of operation"

Westfeld, A. "F5 - A Steganographic Algorithm - High Capacity Despite

Better Steganalysis"

Federal Information Processing Standard (FIPS) "Specification for the

ADVANCED ENCRYPTION STANDARD (AES)"

IEEE "754-2008 - IEEE Standard for Floating-Point Arithmetic"

International Organization for Standardization "ISO/IEC 10118-3:2004 --

Information technology -- Security techniques -- Hash-functions -- Part 3:

Dedicated hash-functions"

National Institute for Standards and Technology (NIST) "Recommendation

for Block Cipher Modes of Operation: Methods and Techniques"

Balenson, D. "Privacy Enhancement for Internet Electronic Mail: Part III:

Algorithms, Modes, and Identifiers" RFC 1423 DOI 10.17487/RFC1423

<https://www.rfc-editor.org/info/rfc1423>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels"

BCP 14 RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-

editor.org/info/rfc2119>

Whiting, D. Housley, R. N. Ferguson "Counter with CBC-MAC (CCM)"

RFC 3610 DOI 10.17487/RFC3610 <https://www.rfc-

editor.org/info/rfc3610>

Moriai, S. A. Kato "Use of the Camellia Encryption Algorithm in

Cryptographic Message Syntax (CMS)" RFC 3657 DOI 10.17487/RFC3657

<https://www.rfc-editor.org/info/rfc3657>

Housley, R. "Using Advanced Encryption Standard (AES) Counter Mode With

IPsec Encapsulating Security Payload (ESP)" RFC 3686 DOI 10.17487/

RFC3686 <https://www.rfc-editor.org/info/rfc3686>

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 29

https://www.rfc-editor.org/info/rfc1423
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3657
https://www.rfc-editor.org/info/rfc3686

[RFC5234]

[RFC5288]

[RFC5958]

[RFC7253]

[RFC8017]

[SEC1]

[TWOFISH]

[XEP-0231]

[DeadParrot]

[KAnon]

[MVAnalysis]

[RFC1939]

[RFC2045]

[RFC2595]

[RFC3501]

[RFC5321]

 and ,

, , , , January 2008,

.

, , and ,

, , , August

2008, .

, , , ,

August 2010, .

 and , ,

, , May 2014,

.

, , , and ,

, ,

, November 2016, .

, , 21 May 2009.

,

, March 1999.

 and , , 3 September 2008,

.

12.2. Informative References

, , and ,

, 2013,

.

, , and , ,

2003.

, , 2018,

.

 and , , , ,

, May 1996,

.

 and ,

, ,

, November 1996, .

, , ,

, June 1999, .

, ,

, , March 2003,

.

, , ,

, October 2008, .

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:

ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://

www.rfc-editor.org/info/rfc5234>

Salowey, J. Choudhury, A. D. McGrew "AES Galois Counter Mode

(GCM) Cipher Suites for TLS" RFC 5288 DOI 10.17487/RFC5288

<https://www.rfc-editor.org/info/rfc5288>

Turner, S. "Asymmetric Key Packages" RFC 5958 DOI 10.17487/RFC5958

<https://www.rfc-editor.org/info/rfc5958>

Krovetz, T. P. Rogaway "The OCB Authenticated-Encryption Algorithm"

RFC 7253 DOI 10.17487/RFC7253 <https://www.rfc-editor.org/

info/rfc7253>

Moriarty, K., Ed. Kaliski, B. Jonsson, J. A. Rusch "PKCS #1: RSA

Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/

RFC8017 <https://www.rfc-editor.org/info/rfc8017>

Certicom Research "SEC 1: Elliptic Curve Cryptography"

Schneier, B. "The Twofish Encryptions Algorithm: A 128-Bit Block Cipher,

1st Edition"

Peter, S.A. P. Simerda "XEP-0231: Bits of Binary"

<https://xmpp.org/extensions/xep-0231.html>

Houmansadr, A. Burbaker, C. V. Shmatikov "The Parrot is Dead:

Observing Unobservable Network Communications" <https://

people.cs.umass.edu/~amir/papers/parrot.pdf>

Ahn, L. Bortz, A. N.J. Hopper "k-Anonymous Message Transmission"

Gwerder, M. "MessageVortex" <https://messagevortex.net/devel/

messageVortex.pdf>

Myers, J. M. Rose "Post Office Protocol - Version 3" STD 53 RFC 1939

DOI 10.17487/RFC1939 <https://www.rfc-editor.org/info/

rfc1939>

Freed, N. N. Borenstein "Multipurpose Internet Mail Extensions (MIME)

Part One: Format of Internet Message Bodies" RFC 2045 DOI 10.17487/

RFC2045 <https://www.rfc-editor.org/info/rfc2045>

Newman, C. "Using TLS with IMAP, POP3 and ACAP" RFC 2595 DOI

10.17487/RFC2595 <https://www.rfc-editor.org/info/rfc2595>

Crispin, M. "INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1"

RFC 3501 DOI 10.17487/RFC3501 <https://www.rfc-

editor.org/info/rfc3501>

Klensin, J. "Simple Mail Transfer Protocol" RFC 5321 DOI 10.17487/

RFC5321 <https://www.rfc-editor.org/info/rfc5321>

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 30

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5958
https://www.rfc-editor.org/info/rfc7253
https://www.rfc-editor.org/info/rfc7253
https://www.rfc-editor.org/info/rfc8017
https://xmpp.org/extensions/xep-0231.html
https://people.cs.umass.edu/~amir/papers/parrot.pdf
https://people.cs.umass.edu/~amir/papers/parrot.pdf
https://messagevortex.net/devel/messageVortex.pdf
https://messagevortex.net/devel/messageVortex.pdf
https://www.rfc-editor.org/info/rfc1939
https://www.rfc-editor.org/info/rfc1939
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2595
https://www.rfc-editor.org/info/rfc3501
https://www.rfc-editor.org/info/rfc3501
https://www.rfc-editor.org/info/rfc5321

[RFC6120] , ,

, , March 2011,

.

Saint-Andre, P. "Extensible Messaging and Presence Protocol (XMPP): Core"

RFC 6120 DOI 10.17487/RFC6120 <https://www.rfc-

editor.org/info/rfc6120>

Appendix A. The ASN.1 schema for Vortex messages

The following sections contain the ASN.1 modules specifying the MessageVortex Protocol.

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 31

https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6120

A.1. The main VortexMessageBlocks

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 32

MessageVortex-Schema DEFINITIONS EXPLICIT TAGS ::=

BEGIN

 EXPORTS PrefixBlock, InnerMessageBlock, RoutingBlock,

 maxWorkspaceID;

 IMPORTS SymmetricKey, AsymmetricKey, MacAlgorithmSpec, CipherSpec

 FROM MessageVortex-Ciphers

 HeaderRequest

 FROM MessageVortex-Requests

 PayloadOperation, MapBlockOperation

 FROM MessageVortex-Operations

 UsagePeriod, BlendingSpec

 FROM MessageVortex-Helpers;

 --***

 -- Constant definitions

 --***

 -- maximum serial number

 maxSerial INTEGER ::= 4294967295

 -- maximum number of administrative requests

 maxNumOfRequests INTEGER ::= 8

 -- maximum number of seconds which the message might be delayed

 -- in the local queue (starting from startOffset)

 maxDurationOfProcessing INTEGER ::= 86400

 -- maximum id of an operation

 minWorkspaceID INTEGER ::= 32768

 -- maximum number of routing blocks in a message

 maxRoutingBlks INTEGER ::= 127

 -- maximum number a block may be replayed

 maxNumOfReplays INTEGER ::= 127

 -- maximum number of payload chunks in a message

 maxPayloadBlks INTEGER ::= 127

 -- maximum number of seconds a proof of non revocation may be old

 maxTimeCachedProof INTEGER ::= 86400

 -- The maximum ID of the workspace

 maxWorkspaceId INTEGER ::= 65535

 -- The maximum number of assembly instructions per combo

 maxAssemblyInstr INTEGER ::= 255

 --***

 -- Types

 --***

 PuzzleIdentifier ::= OCTET STRING (SIZE(0..32))

 ChainSecret ::= OCTET STRING (SIZE (16..64))

 --***

 -- Block Definitions

 --***

 PrefixBlock ::= SEQUENCE {

 version [0] INTEGER OPTIONAL,

 key [2] SymmetricKey

 }

 InnerMessageBlock ::= SEQUENCE {

 padding OCTET STRING,

 prefix CHOICE {

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 33

 plain [11011] PrefixBlock,

 -- contains prefix encrypted with receivers

 -- public key

 encrypted [11012] OCTET STRING

 },

 header CHOICE {

 -- debug/internal use only

 plain [11021] HeaderBlock,

 -- contains encrypted identity block

 encyrpted [11022] OCTET STRING

 },

 -- contains signature of Identity [as stored in

 -- HeaderBlock; signed unencrypted HeaderBlock without

 -- Tag]

 identitySignature OCTET STRING,

 -- contains routing information (next hop) for the

 -- payloads

 routing [11001] CHOICE {

 plain [11031] RoutingBlock,

 -- contains encrypted routing block

 encyrpted [11032] OCTET STRING

 },

 -- contains the actual payload

 payload SEQUENCE (SIZE (0..maxPayloadBlks))

 OF OCTET STRING

 }

 HeaderBlock ::= SEQUENCE {

 -- Public key of the identity representing this

 -- transmission

 identityKey AsymmetricKey,

 -- serial identifying this block

 serial INTEGER (0..maxSerial),

 -- number of times this block may be replayed

 -- (Tuple is identityKey, serial while

 -- UsagePeriod of block)

 maxReplays INTEGER (0..maxNumOfReplays),

 -- subsequent Blocks are not processed before

 -- valid time.

 -- Host may reject too long retention.

 -- Recomended validity support >=1Mt.

 valid UsagePeriod,

 -- contains the MAC-Algorithm used for signing

 signAlgorithm MacAlgorithmSpec,

 -- contains administrative requests such as

 -- quota requests

 requests SEQUENCE

 (SIZE (0..maxNumOfRequests))

 OF HeaderRequest ,

 -- Reply Block for the requests

 requestReplyBlock RoutingCombo OPTIONAL,

 -- padding and identitifier required to solve

 -- the cryptopuzzle

 identifier [12201] PuzzleIdentifier OPTIONAL,

 -- This is for solving crypto puzzles

 proofOfWork[12202] OCTET STRING OPTIONAL

 }

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 34

 RoutingBlock ::= SEQUENCE {

 -- contains the routingCombos

 routing [331] SEQUENCE

 (SIZE (0..maxRoutingBlks))

 OF RoutingCombo,

 -- contains the mapping operations to map

 -- payloads to the workspace

 mappings [332] SEQUENCE

 (SIZE (0..maxPayloadBlks))

 OF MapBlockOperation,

 -- contains a routing block which may be used

 -- when sending error messages back to the quota

 -- owner this routing block may be cached for

 -- future use

 replyBlock [332] SEQUENCE {

 murb RoutingCombo,

 maxReplay INTEGER,

 validity UsagePeriod

 } OPTIONAL

 }

 RoutingCombo ::= SEQUENCE {

 -- contains the period when the payload should

 -- be processed.

 -- Router might refuse too long queue retention

 -- Recommended support for retention >=1h

 minProcessTime INTEGER

 (0..maxDurationOfProcessing),

 maxProcessTime INTEGER

 (0..maxDurationOfProcessing),

 -- The message key to encrypt the message

 peerKey [401] SEQUENCE

 (SIZE (1..maxNumOfReplays))

 OF SymmetricKey OPTIONAL,

 -- contains the next recipient

 recipient [402] BlendingSpec,

 -- PrefixBlock encrypted with message key

 mPrefix [403] SEQUENCE

 (SIZE (1..maxNumOfReplays))

 OF OCTET STRING OPTIONAL,

 -- PrefixBlock encrypted with sender key

 cPrefix [404] OCTET STRING OPTIONAL,

 -- HeaderBlock encrypted with sender key

 header [405] OCTET STRING OPTIONAL,

 -- RoutingBlock encrypted with sender key

 routing [406] OCTET STRING OPTIONAL,

 -- contains information for building messages

 -- (when used as MURB)

 -- ID 0 denotes original/local message

 -- ID 1-maxPayloadBlks denotes target message

 -- ID 32767 denotes a solicited reply block

 -- 32768-maxWorkspaceId shared workspace for all

 -- blocks of this identity)

 assembly [407] SEQUENCE

 (SIZE (0..maxAssemblyInstr))

 OF PayloadOperation,

 -- optional for storage of the arrival time

 validity [408] UsagePeriod OPTIONAL

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 35

 }

END

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 36

A.2. The VortexMessage Ciphers Structures

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 37

MessageVortex-Ciphers DEFINITIONS EXPLICIT TAGS ::=

BEGIN

 EXPORTS SymmetricKey, AsymmetricKey, MacAlgorithmSpec,

 MacAlgorithm, CipherSpec, PRNGType;

 CipherSpec ::= SEQUENCE {

 asymmetric [16001] AsymAlgSpec OPTIONAL,

 symmetric [16002] SymAlgSpec OPTIONAL,

 mac [16003] MacAlgorithmSpec OPTIONAL,

 cipherUsage [16004] CipherUsage

 }

 CipherUsage ::= ENUMERATED {

 sign (200),

 encrypt (210)

 }

 SymAlgSpec ::= SEQUENCE {

 algorithm [16101]SymmetricAlgorithm,

 -- if ommited: pkcs7

 padding [16102]CipherPadding OPTIONAL,

 -- if ommited: cbc

 mode [16103]CipherMode OPTIONAL,

 parameter [16104]AlgParameters OPTIONAL

 }

 AsymAlgSpec ::= SEQUENCE {

 algorithm AsymmetricAlgorithm,

 -- if ommited: pkcs1

 padding [16102]CipherPadding OPTIONAL,

 parameter AlgParameters OPTIONAL

 }

 SymmetricKey ::= SEQUENCE {

 keyType SymmetricAlgorithm,

 parameter AlgParameters,

 key OCTET STRING (SIZE(16..512))

 }

 AsymmetricKey ::= SEQUENCE {

 keyType AsymmetricAlgorithm,

 -- private key encoded as PKCS#8/PrivateKeyInfo

 publicKey [2] OCTET STRING,

 -- private key encoded as

 -- X.509/SubjectPublicKeyInfo

 privateKey [3] OCTET STRING OPTIONAL

 }

 SymmetricAlgorithm ::= ENUMERATED {

 aes128 (1000), -- required

 aes192 (1001), -- optional support

 aes256 (1002), -- required

 camellia128 (1100), -- required

 camellia192 (1101), -- optional support

 camellia256 (1102), -- required

 twofish128 (1200), -- optional support

 twofish192 (1201), -- optional support

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 38

 twofish256 (1202) -- optional support

 }

 AsymmetricAlgorithm ::= ENUMERATED {

 rsa (2000),

 dsa (2100),

 ec (2200),

 ntru (2300)

 }

 ECCurveType ::= ENUMERATED{

 secp384r1 (2500),

 sect409k1 (2501),

 secp521r1 (2502)

 }

 AlgParameters ::= SEQUENCE {

 keySize [9000] INTEGER (0..65535) OPTIONAL,

 curveType [9001] ECCurveType OPTIONAL,

 iv [9002] OCTET STRING OPTIONAL,

 nonce [9003] OCTET STRING OPTIONAL,

 mode [9004] CipherMode OPTIONAL,

 padding [9005] CipherPadding OPTIONAL,

 n [9010] INTEGER OPTIONAL,

 p [9011] INTEGER OPTIONAL,

 q [9012] INTEGER OPTIONAL,

 k [9013] INTEGER OPTIONAL,

 t [9014] INTEGER OPTIONAL

 }

 CipherMode ::= ENUMERATED {

 cbc (10000), -- required

 ctr (10001), -- required

 ccm (10002), -- optional support

 gcm (10003), -- optional support

 ocb (10004), -- optional support

 ofb (10005), -- optional support

 xts (10006), -- optional support

 none (10100) -- required

 }

 CipherPadding ::= ENUMERATED {

 none (10200), -- required

 pkcs1 (10201), -- required

 rsaesOaep (10202), -- optional support

 oaepSha256Mgf1 (10203), -- optional support

 pkcs7 (10301), -- required

 ap (10221) -- required

 }

 MacAlgorithm ::= ENUMERATED {

 sha3-256 (3000), -- required

 sha3-384 (3001), -- optional support

 sha3-512 (3002), -- required

 ripemd160 (3100), -- optional support

 ripemd256 (3101), -- required

 ripemd320 (3102) -- optional support

 }

 MacAlgorithmSpec ::= SEQUENCE {

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 39

 algorithm MacAlgorithm,

 parameter AlgParameters

 }

 PRNGAlgorithmSpec ::= SEQUENCE {

 type PRNGType,

 seed OCTET STRING

 }

 PRNGType ::= ENUMERATED {

 mrg32k3a (10300), -- required

 blumMicali (10301) -- required

 }

END

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 40

A.3. The VortexMessage Replies Structures

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 41

MessageVortex-Replies DEFINITIONS EXPLICIT TAGS ::=

BEGIN

 EXPORTS SpecialBlock;

 IMPORTS BlendingSpec, NodeSpec

 FROM MessageVortex-Helpers

 RequirementBlock

 FROM MessageVortex-Requirements

 CipherSpec, PRNGType, MacAlgorithm

 FROM MessageVortex-Ciphers

 maxGFSize

 FROM MessageVortex-Operations

 maxNumberOfReplays

 FROM MessageVortex-Schema;

 SpecialBlock ::= CHOICE {

 capabilities [1] ReplyCapability,

 requirement [2] SEQUENCE (SIZE (1..127))

 OF RequirementBlock,

 quota [4] ReplyCurrentQuota,

 nodes [5] ReplyNodes,

 status [99] StatusBlock

 }

 StatusBlock ::= SEQUENCE {

 code StatusCode

 }

 StatusCode ::= ENUMERATED {

 -- System messages

 ok (2000),

 quotaStatus (2101),

 puzzleRequired (2201),

 -- protocol usage failures

 transferQuotaExceeded (3001),

 messageQuotaExceeded (3002),

 requestedQuotaOutOfBand (3003),

 identityUnknown (3101),

 messageChunkMissing (3201),

 messageLifeExpired (3202),

 puzzleUnknown (3301),

 -- capability errors

 macAlgorithmUnknown (3801),

 symmetricAlgorithmUnknown (3802),

 asymmetricAlgorithmUnknown (3803),

 prngAlgorithmUnknown (3804),

 missingParameters (3820),

 badParameters (3821),

 -- Mayor host specific errors

 hostError (5001)

 }

 ReplyNodes ::= SEQUENCE {

 node SEQUENCE (SIZE (1..5))

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 42

 OF NodeSpec

 }

 ReplyCapability ::= SEQUENCE {

 -- supported ciphers

 cipher SEQUENCE (SIZE (2..256))

 OF CipherSpec,

 -- supported mac algorithms

 mac SEQUENCE (SIZE (2..256))

 OF MacAlgorithm,

 -- supported PRNGs

 prng SEQUENCE (SIZE (2..256))

 OF PRNGType,

 -- maximum number of bytes to be transferred

 -- (outgoing bytes in vortex message without blending)

 maxTransferQuota INTEGER (0..4294967295),

 -- maximum number of messages to process for this identity

 maxMessageQuota INTEGER (0..4294967295),

 -- maximum simultaneously tracked header serials

 maxHeaderSerials INTEGER (0..4294967295),

 -- maximum simultaneously valid build operations in workspace

 maxBuildOps INTEGER (0..4294967295),

 -- maximum payload size

 maxPayloadSize INTEGER (0..4294967295),

 -- maximum active payloads (without intermediate products)

 maxActivePayloads INTEGER (0..4294967295),

 -- maximum header lifespan in seconds

 maxHeaderLive INTEGER (0..4294967295),

 -- maximum number of replays accepted,

 maxReplay INTEGER (0..maxNumberOfReplays),

 -- Supported inbound blending

 supportedBlendingIn SEQUENCE OF BlendingSpec,

 -- Supported outbound blending

 supportedBlendingOut SEQUENCE OF BlendingSpec,

 -- supported galoise fields

 supportedGFSize SEQUENCE OF INTEGER (1..maxGF)

 }

 ReplyCurrentQuota ::= SEQUENCE {

 messages INTEGER (0..4294967295),

 size INTEGER (0..4294967295)

 }

 ReplyUpgrade ::= SEQUENCE {

 -- The offered version

 version [0] OCTET STRING,

 -- The offered identitfier

 identifier [1] OCTET STRING,

 -- The archive or blob containing the software

 blob [2] OCTET STRING OPTIONAL

 }

END

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 43

A.4. The VortexMessage Requirements Structures

MessageVortex-Requirements DEFINITIONS EXPLICIT TAGS ::=

BEGIN

 EXPORTS RequirementBlock;

 IMPORTS MacAlgorithmSpec

 FROM MessageVortex-Ciphers

 UsagePeriod, UsagePeriod

 FROM MessageVortex-Helpers;

 RequirementBlock ::= CHOICE {

 puzzle [1] RequirementPuzzleRequired,

 payment [2] RequirementPaymentRequired

 }

 RequirementPuzzleRequired ::= SEQUENCE {

 -- bit sequence at beginning of hash from

 -- the encrypted identity block

 challenge BIT STRING,

 mac MacAlgorithmSpec,

 valid UsagePeriod,

 identifier INTEGER (0..4294967295)

 }

 RequirementPaymentRequired ::= SEQUENCE {

 account OCTET STRING,

 ammount REAL,

 currency Currency

 }

 Currency ::= ENUMERATED {

 btc (8001),

 eth (8002),

 zec (8003)

 }

END

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 44

A.5. The VortexMessage Helpers Structures

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 45

MessageVortex-Helpers DEFINITIONS EXPLICIT TAGS ::=

BEGIN

 EXPORTS UsagePeriod, BlendingSpec, NodeSpec;

 IMPORTS AsymmetricKey, SymmetricKey

 FROM MessageVortex-Ciphers;

 -- the maximum number of embeddable parameters

 maxNumberOfParameter INTEGER ::= 127

 UsagePeriod ::= CHOICE {

 absolute [2] AbsoluteUsagePeriod,

 relative [3] RelativeUsagePeriod

 }

 AbsoluteUsagePeriod ::= SEQUENCE {

 notBefore [0] GeneralizedTime OPTIONAL,

 notAfter [1] GeneralizedTime OPTIONAL

 }

 RelativeUsagePeriod ::= SEQUENCE {

 notBefore [0] INTEGER OPTIONAL,

 notAfter [1] INTEGER OPTIONAL

 }

 -- contains a node spec of a routing point

 -- At the moment either smtp:<email> or xmpp:<jabber>

 BlendingSpec ::= SEQUENCE {

 target [1] NodeSpec,

 blendingType [2] IA5String,

 parameter [3] SEQUENCE

 (SIZE (0..maxNumberOfParameter))

 OF BlendingParameter

 }

 BlendingParameter ::= CHOICE {

 offset [1] INTEGER,

 symmetricKey [2] SymmetricKey,

 asymmetricKey [3] AsymmetricKey,

 passphrase [4] OCTET STRING

 }

 NodeSpec ::= SEQUENCE {

 transportProtocol [1] Protocol,

 recipientAddress [2] IA5String,

 recipientKey [3] AsymmetricKey OPTIONAL

 }

 Protocol ::= ENUMERATED {

 smtp (100),

 xmmp (110)

 }

END

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 46

A.6. The VortexMessage Additional Structures

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 47

-- States reflected:

-- Tuple()=Val()[vallidity; allowed operations]

-- {Store}

-- - Tuple(identity)=Val(messageQuota,transferQuota,

-- sequence of Routingblocks for Error Message

-- Routing) [validity; Requested at creation; may

-- be extended upon request] {identityStore}

-- - Tuple(Identity,Serial)=maxReplays ['valid' from

-- Identity Block; from First Identity Block; may

-- only be reduced] {IdentityReplayStore}

MessageVortex-NonProtocolBlocks DEFINITIONS

 EXPLICIT TAGS ::=

BEGIN

 IMPORTS PrefixBlock, InnerMessageBlock,

 RoutingBlock,

 maxWorkspaceID

 FROM MessageVortex-Schema

 UsagePeriod, NodeSpec, BlendingSpec

 FROM MessageVortex-Helpers

 AsymmetricKey

 FROM MessageVortex-Ciphers

 RequirementBlock

 FROM MessageVortex-Requirements;

 -- maximum size of transfer quota in bytes of an

 -- identity

 maxTransferQuota INTEGER ::= 4294967295

 -- maximum # of messages quota in messages of an

 -- identity

 maxMessageQuota INTEGER ::= 4294967295

 -- do not use these blocks for protocol encoding

 -- (internal only)

 VortexMessage ::= SEQUENCE {

 prefix CHOICE {

 plain [10011] PrefixBlock,

 -- contains prefix encrypted with receivers

 -- public key

 encrypted [10012] OCTET STRING

 },

 innerMessage CHOICE {

 plain [10021] InnerMessageBlock,

 -- contains inner message encrypted with

 -- Symmetric key from prefix

 encrypted [10022] OCTET STRING

 }

 }

 MemoryPayloadChunk ::= SEQUENCE {

 id INTEGER (0..maxWorkspaceID),

 payload [100] OCTET STRING,

 validity UsagePeriod

 }

 IdentityStore ::= SEQUENCE {

 identities SEQUENCE (SIZE (0..4294967295))

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 48

 OF IdentityStoreBlock

 }

 IdentityStoreBlock ::= SEQUENCE {

 valid UsagePeriod,

 messageQuota INTEGER (0..maxMessageQuota),

 transferQuota INTEGER (0..maxTransferQuota),

 -- if omitted this is a node identity

 identity [1001] AsymmetricKey OPTIONAL,

 -- if ommited own identity key

 nodeAddress [1002] NodeSpec OPTIONAL,

 -- Contains the identity of the owning node;

 -- May be ommited if local node

 nodeKey [1003] SEQUENCE OF AsymmetricKey

 OPTIONAL,

 routingBlocks [1004] SEQUENCE OF RoutingBlock

 OPTIONAL,

 replayStore [1005] IdentityReplayStore,

 requirement [1006] RequirementBlock OPTIONAL

 }

 IdentityReplayStore ::= SEQUENCE {

 replays SEQUENCE (SIZE (0..4294967295))

 OF IdentityReplayBlock

 }

 IdentityReplayBlock ::= SEQUENCE {

 identity AsymmetricKey,

 valid UsagePeriod,

 replaysRemaining INTEGER (0..4294967295)

 }

END

Author's Address

Martin Gwerder

University of Applied Sciences of Northwestern Switzerland

Bahnhofstrasse 5

CH- 5210 Windisch

Switzerland

 +41 56 202 76 81 Phone:

 rfc@messagevortex.net Email:

Internet-Draft MessageVortex Protocol April 2019

Gwerder Expires 25 October 2019 Page 49

tel:+41%2056%20202%2076%2081
mailto:rfc@messagevortex.net

	MessageVortex Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Protocol Specification
	1.3. Number Specification

	2. Entities Overview
	2.1. Node
	2.1.1. Blocks
	2.1.2. NodeSpec
	2.1.2.1. NodeSpec for SMTP nodes
	2.1.2.2. NodeSpec for XMPP nodes

	2.2. Peer Partners
	2.3. Encryption keys
	2.3.1. Identity Keys
	2.3.2. Peer Key
	2.3.3. Sender Key

	2.4. Vortex Message
	2.5. Message
	2.6. Key and MAC specifications and usage
	2.6.1. Asymmetric Keys
	2.6.2. Symmetric Keys

	2.7. Transport Address
	2.8. Identity
	2.8.1. Peer Identity
	2.8.2. Ephemeral Identity
	2.8.3. Official Identity

	2.9. Workspace
	2.10. Multi-use Reply Blocks

	3. Layer Overview
	3.1. Transport Layer
	3.2. Blending Layer
	3.3. Routing Layer
	3.4. Accounting Layer

	4. Vortex Message
	4.1. Overview
	4.2. Message Prefix Block (MPREFIX)
	4.3. Inner Message Block
	4.3.1. Control Prefix Block
	4.3.2. Control Blocks
	4.3.2.1. Header Block
	4.3.2.2. Routing Block

	4.3.3. Payload Block

	5. General notes
	5.1. Supported Symmetric Ciphers
	5.2. Supported Asymmetric Ciphers
	5.3. Supported MACs
	5.4. Supported Paddings
	5.5. Supported Modes

	6. Blending
	6.1. Blending in Attachments
	6.1.1. PLAIN embedding into attachments
	6.1.2. F5 embedding into attachments

	6.2. Blending into an SMTP layer
	6.3. Blending into an XMPP layer

	7. Routing
	7.1. Vortex Message Processing
	7.1.1. Processing of incoming Vortex Messages
	7.1.2. Processing of Routing Blocks in the Workspace
	7.1.3. Processing of Outgoing Vortex Messages

	7.2. Header Requests
	7.2.1. Request New Ephemeral Identity
	7.2.2. Request Message Quota
	7.2.3. Request Increase of Message Quota
	7.2.4. Request Transfer Quota
	7.2.5. Query Quota
	7.2.6. Request Capabilities
	7.2.7. Request Nodes
	7.2.8. Request Identity Replace

	7.3. Special Blocks
	7.3.1. Error Block
	7.3.2. Requirement Block
	7.3.2.1. Puzzle Requirement
	7.3.2.2. Payment Requirement

	7.4. Routing Operations
	7.4.1. Mapping Operation
	7.4.2. Split and Merge Operations
	7.4.3. Encrypt and Decrypt Operations
	7.4.4. Add and Remove Redundancy Operations
	7.4.4.1. Padding Operation
	7.4.4.2. Apply Matrix
	7.4.4.3. Encrypt Target Block

	7.5. Processing of Vortex Messages

	8. Accounting
	8.1. Accounting Operations
	8.1.1. Time-Based Garbage Collection
	8.1.2. Time-Based Routing Initiation
	8.1.3. Routing Based Quota Updates
	8.1.4. Routing Based Authorization
	8.1.5. Ephemeral Identity Creation

	9. Acknowledgments
	10. IANA Considerations
	11. Security Considerations
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. The ASN.1 schema for Vortex messages
	A.1. The main VortexMessageBlocks
	A.2. The VortexMessage Ciphers Structures
	A.3. The VortexMessage Replies Structures
	A.4. The VortexMessage Requirements Structures
	A.5. The VortexMessage Helpers Structures
	A.6. The VortexMessage Additional Structures

	Author's Address

