Workgroup: Internet Engineering Task Force
Internet-Draft: draft-gwerder-messagevortexmain-09

Published: 6 April 2022
Intended Experimental
Status: 8 October 2022
Expires: M. Gwerder
Author: FHNW

MessageVortex Protocol

Abstract

The MessageVortex (referred to as Vortex) protocol achieves different degrees of
anonymity, including sender, receiver, and third-party anonymity, by specifying messages
embedded within the existing transfer protocols, such as SMTP or XMPP, sent via peer
nodes to one or more recipients.

The protocol outperforms others by decoupling the transport from the final transmitter and
receiver. No trust is placed into any infrastructure except for that of the sending and
receiving parties of the message. The creator of the routing block (routing block builder;
RBB) has full control over the message flow. Routing nodes gain no non-obvious knowledge
about the messages even when collaborating. While third-party anonymity is always
achieved, the protocol also allows for either sender or receiver anonymity.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP
79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be
updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use
Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 October 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and

Gwerder Expires 8 October 2022 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Internet-Draft MessageVortex Protocol April 2022

restrictions with respect to this document. Code Components extracted from this document

must include Revised BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction
1.1. Requirements Language
1.2. Protocol Specification

1.3. Number Specification

2. Entities Overview
2.1. Node
2.1.1. Blocks
2.1.2. NodeSpec
2.1.2.1. NodeSpec for SMTP nodes
2.1.2.2. NodeSpec for XMPP nodes

2.2. Peer Partners

2.3. Encryption Keys
2.3.1. ldentity Keys
2.3.2. Peer Key
2.3.3. Sender Key

2.4. Vortex Message

2.5. Message

2.6. Key and MAC specifications and usage
2.6.1. Asymmetric Keys
2.6.2. Symmetric Keys

2.7. Transport Address

2.8. ldentity
2.8.1. Peer Identity
2.8.2. Ephemeral Identity
2.8.3. Official Identity

2.9. Workspace

Gwerder Expires 8 October 2022

Page 2

Internet-Draft MessageVortex Protocol April 2022

2.10. Multi-use Reply Blocks

2.11. Protocol Version

3. Layer Overview
3.1. Transport Layer
3.2. Blending Layer
3.3. Routing Layer
3.4. Accounting Layer

4. Vortex Message
4.1. Overview
4.2. Message Prefix Block (MPREFIX)
4.3. Inner Message Block
4.3.1. Control Prefix Block
4.3.2. Control Blocks
4.3.2.1. Header Block
4.3.2.2. Routing Block

4.3.3. Payload Block

5. General notes
5.1. Supported Symmetric Ciphers
5.2. Supported Asymmetric Ciphers
5.3. Supported MACs
5.4. Supported Paddings
5.5. Supported Modes

6. Blending
6.1. Blending in Attachments
6.1.1. PLAIN embedding into attachments
6.1.2. F5 embedding into attachments
6.2. Blending into an SMTP layer
6.3. Blending into an XMPP layer

Gwerder Expires 8 October 2022 Page 3

Internet-Draft MessageVortex Protocol April 2022

7. Routing
7.1. Vortex Message Processing
7.1.1. Processing of incoming Vortex Messages
7.1.2. Processing of Routing Blocks in the Workspace

7.1.3. Processing of Outgoing Vortex Messages

7.2. Header Requests
7.2.1. Request New Ephemeral Identity
7.2.2. Request Message Quota
7.2.3. Request Increase of Message Quota
7.2.4. Request Transfer Quota
7.2.5. Query Quota
7.2.6. Request Capabilities
7.2.7. Request Nodes
7.2.8. Request Identity Replace
7.2.9. Request Upgrade

7.3. Special Blocks
7.3.1. Error Block
7.3.2. Requirement Block
7.3.2.1. Puzzle Requirement
7.3.2.2. Payment Requirement

7.3.2.3. Upgrade

7.4. Routing Operations

7.4.1. Mapping Operation

7.4.2. Split and Merge Operations

7.4.3. Encrypt and Decrypt Operations

7.4.4. Add and Remove Redundancy Operations
7.4.4.1. Padding Operation
7.4.4.2. Apply Matrix
7.4.4.3. Encrypt Target Block

7.5. Processing of Vortex Messages

Gwerder Expires 8 October 2022 Page 4

Internet-Draft MessageVortex Protocol April 2022

8. Accounting
8.1. Accounting Operations
8.1.1. Time-Based Garbage Collection
8.1.2. Time-Based Routing Initiation
8.1.3. Routing Based Quota Updates
8.1.4. Routing Based Authorization
8.1.5. Ephemeral Identity Creation

9. IANA Considerations
10. Security Considerations
10.1. CIA Triad
10.2. Anonymity and Detectability
10.2.1. Blending Layer Considerations

10.2.2. Routing and Accounting Layer Considerations
10.3. Active Adversaries

11. References
11.1. Normative References

11.2. Informative References

Appendix A. The ASN.1 schema for Vortex messages
A.1. The Main MessageVortex Blocks
A.2. The MessageVortex Ciphers Structures
A.3. The MessageVortex Request Structures
A.4. The MessageVortex Replies Structures
A.5. The MessageVortex Requirements Structures
A.6. The MessageVortex Helpers Structures

A.7. The MessageVortex Additional Structures

Appendix B. Changelog
Author's Address

Gwerder Expires 8 October 2022 Page 5

Internet-Draft MessageVortex Protocol April 2022

1. Introduction

Anonymization is difficult to achieve. Most previous attempts relied on either trust in a
dedicated infrastructure or a specialized networking protocol.

Instead of defining a transport layer, Vortex piggybacks on other transport protocols. A
blending layer embeds MessageVortex messages (VortexMessage) into ordinary messages
of the respective transport protocol. This layer picks up the messages, passes them to a
routing layer, which applies local operations to the messages, and resends the new
message chunks to the next recipients.

A processing node learns as little as possible from the message or the network utilized. The
operations have been designed to be sensible in any context. The 'onionized' structure of
the protocol makes it impossible to follow the trace of a message without having control
over the processing node.

MessageVortex is a protocol that allows sending and receiving messages by using a routing
block instead of a destination address. With this approach, the sender has full control over
all parameters of the message flow.

A message is split and reassembled during transmission. Chunks of the message may carry
redundant information to avoid service interruptions during transit. Decoy and message
traffic are not differentiable as the nature of the addRedundancy operation allows each
generated portion to be either message or decoy. Therefore, all routing nodes are unable to
distinguish between message and decoy traffic.

After processing, a potential receiver node knows if the message is destined for it (by
creating a chunk with ID 0) or other nodes. Due to missing keys, no other node may
perform this processing.

This RFC begins with general terminology (see Section 2) followed by an overview of the
process (see Section 3). The subsequent sections describe the details of the protocol.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

1.2. Protocol Specification
Appendix A specifies all relevant parts of the protocol in ASN.1 (see [CCITT.X680.2002] and
[CCITT.X208.1988]). The blocks are DER-encoded, if not otherwise specified.

1.3. Number Specification

All numbers within this document are, if not suffixed, decimal numbers. Numbers suffixed
with a small letter 'h' followed by two hexadecimal digits are octets written in hexadecimal.
For example, a blank ASCII character (' ') is written as 20h and a capital 'K' in ASCII as 4Bh.

Gwerder Expires 8 October 2022 Page 6

Internet-Draft MessageVortex Protocol April 2022

2. Entities Overview

The following entities used in this document are defined below.

2.1. Node

The term 'node' describes any computer system connected to other nodes, which support
the MessageVortex protocol. A 'node address' is typically an email address, an XMPP
address, or other transport protocol identity supporting the MessageVortex protocol. Any
address SHOULD include a public part of an 'identity key' to allow messages to transmit
safely. One or more addresses MAY belong to the same node.

2.1.1. Blocks

A 'block' represents an ASN.1 sequence in a transmitted message. We embed messages in
the transport protocol, and these messages may be of any size.

2.1.2. NodeSpec

A nodeSpec block, as specified in Appendix A.6, expresses an addressable node in a unified
format. The nodeSpec contains a reference to the routing protocol, the routing address
within this protocol, and the keys required for addressing the node. This RFC specifies
transport layers for XMPP and SMTP. Additional transport layers will require an extension to
this RFC.

2.1.2.1. NodeSpec for SMTP nodes

An alternative address representation is defined that allows a standard email client to
address a Vortex node. A node SHOULD support the smtpAlternateSpec (its specification is
noted in ABNF as in [RFC5234]). For applications with QR code support, an implementation
SHOULD use the smtpUrl representation.

localPart = <local part of address>

domain = <domain part of address>

email = |localPart "@" domain

keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>
smtpAlternateSpec = localPart ".." keySpec ".." domain "@localhost"
smtpUrl = "vortexsmtp://" smtpAlternateSpec

This representation does not support quoted local part SMTP addresses.

2.1.2.2. NodeSpec for XMPP nodes

Typically, a node specification follows the ASN.1 block NodeSpec. For support of XMPP
clients, an implementation SHOULD support the jidAlternateSpec (its specification is noted
in ABNF as in [RFC52341).

Gwerder Expires 8 October 2022 Page 7

Internet-Draft MessageVortex Protocol April 2022

localPart = <local part of address>

domain = <domain part of address>

resourcePart = <resource part of the address>

jid = localPart "@" domain ["/" resourcePart]

keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>;

jidAlternateSpec = localPart ".." keySpec ".."
domain "@localhost" ["/" resourcePart]
jidUrl = "vortexxmpp://" jidAlternateSpec

2.2. Peer Partners

This document refers to two or more message sending or receiving entities as peer
partners. One partner sends a message, and all others receive one or more messages. Peer
partners are message specific, and each partner always connects directly to a node.

2.3. Encryption Keys

Several keys are required for a Vortex message. For identities and ephemeral identities (see
below), we use asymmetric keys, while symmetric keys are used for message encryption.
2.3.1. Identity Keys

Every participant of the network includes an asymmetric key, which SHOULD be either an
EC key with a minimum length of 384 bits or an RSA key with a minimum length of 2048
bits.

The public key must be known by all parties writing to or through the node.

2.3.2. Peer Key

Peer keys are symmetrical keys transmitted with a Vortex message and are always known
to the node sending the message, the node receiving the message, and the creator of the
routing block.

A peer key is included in the Vortex message as well as the building instructions for
subsequent Vortex messages (see RoutingCombo in Appendix A).
2.3.3. Sender Key

The sender key is a symmetrical key protecting the identity and routing block of a Vortex
message. It is encrypted with the receiving peer key and prefixed to the identity block. This
key further decouples the identity and processing information from the previous key.

A sender key is known to only one peer of a Vortex message and the creator of the routing
block.

2.4. Vortex Message

The term 'Vortex message' represents a single transmission between two routing layers. A
message adapted to the transport layer by the blending layer is called a 'blended Vortex
message' (see Section 3).

Gwerder Expires 8 October 2022 Page 8

Internet-Draft MessageVortex Protocol April 2022

A complete Vortex message contains the following items:

* The peer key, which is encrypted with the host key of the node and stored in a
prefixBlock, protects the inner Vortex message (innerMessageBlock).

* The sender key, also encrypted with the host key of the node, protects the identity and
routing block.

* The identity block, protected by the sender key, contains information about the
ephemeral identity of the sender, replay protection information, header requests
(optional), and a requirement reply (optional).

* The routing block, protected by the sender key, contains information on how
subsequent messages are processed, assembled, and blended.

* The payload block, protected by the peer key, contains payload chunks for processing.

2.5. Message

A message is content to be transmitted from a single sender to a recipient. The sender uses
a routing block either built by themself or provided by the receiver to perform the
transmission. While a message may be anonymous, there are different degrees of
anonymity as described in the following.

e If the sender of a message is not known to anyone else except the sender, then this
degree is referred to as 'sender anonymity.'

* If the receiver of a message is not known to anyone else except the receiver, then the
degree is 'receiver anonymity.'

e If an attacker is unable to determine the content, original sender, and final receiver,
then the degree is considered 'third-party anonymity.'

* If a sender or a receiver may be determined as one of a set of <k> entities, then it is
referred to as k-anonymity[KAnon].

A message is always MIME-encoded as specified in [RFC2045].

2.6. Key and MAC specifications and usage

MessageVortex uses a unique encoding for keys. This encoding is designed to be small and
flexible while maintaining a specific base structure.

The following key structures are available:

* SymmetricKey
* AsymmetricKey

MAC does not require a complete structure containing specs and values, and only a
MacAlgorithmSpec is available. The following sections outline the constraints for specifying
parameters of these structures where a node MUST NOT specify any parameter more than
once.

If a crypto mode is specified requiring an IV, then a node MUST provide the IV when
specifying the key.

Gwerder Expires 8 October 2022 Page 9

Internet-Draft MessageVortex Protocol April 2022

2.6.1. Asymmetric Keys

Nodes use asymmetric keys for identifying peer nodes (i.e., Identities) and encrypting
symmetric keys (for subsequent de-/encryption of the payload or blocks). All asymmetric
keys MUST contain a key type specifying a strictly normed key. Also, they MUST contain a
public part of the key encoded as an X.509 container and a private key specified in PKCS#8
wherever possible.

RSA and EC keys MUST contain a keySize parameter. All asymmetric keys SHOULD have a
padding parameter, and a node SHOULD assume PKCS#1 if no padding is specified.

NTRU specification MUST provide the parameters "n", "p", and "q".

2.6.2. Symmetric Keys

Nodes use symmetric keys for encrypting payloads and control blocks. These symmetric
keys MUST contain a key type specifying a key, which MUST be in an encoded form.

A node MUST provide a keySize parameter if the key (or equivalently, the block) size is not
standardized or encoded in the name. All symmetric key specifications MUST contain a
mode and padding parameter. A node MAY list multiple padding or mode parameters in a
ReplyCapability block to offer the recipient a free choice.

2.7. Transport Address

The term 'transport address' represents the token required to address the next immediate
node on the transport layer. An email transport layer would have SMTP addresses, such as
'vortex@example.com,' as the transport address.

2.8. Identity

2.8.1. Peer Identity
The peer identity may contain the following information of a peerpartner:

¢ A transport address (always) and the public key of thisidentity, given there is no
recipient anonymity.

* A routing block, which may be used to contact the sender. If striving for recipient
anonymity, then this block is required.

* The private key, which is only known by the owner of the identity.

2.8.2. Ephemeral Identity

Ephemeral identities are temporary identities created on a single node. These identities
MUST NOT relate to another identity on any other node so that they allow bookkeeping for a
node. Each ephemeral identity has a workspace assigned and may also have the following
items assigned.

* An asymmetric key pair to represent the identity.
e A validity time of the identity.

Gwerder Expires 8 October 2022 Page 10

Internet-Draft MessageVortex Protocol April 2022

2.8.3. Official Identity
An official identity may have the following items assigned.
* Routing blocks used to reply to the node.

* A list of assigned ephemeral identities on all other nodes and their projected quotas.
* A list of known nodes with the respective node identity.

2.9. Workspace

Every official or ephemeral identity has a workspace, which consists of the following
elements.

e Zero or more routing blocks to be processed.
* Slots for a payload block sequentially numbered. Every slot:

o MUST contain a numerical ID identifying the slot.
o MAY contain payload content.
o If a block contains a payload, then it MUST contain a validity period.

2.10. Multi-use Reply Blocks

'Multi-use reply blocks' (MURB) are a special type routing block sent to a receiver of a
message or request. A sender may use such a block one or several times to reply to the
sender linked to the ephemeral identity, and it is possible to achieve sender anonymity
using MURBs.

A vortex node MAY deny the use of MURBs by indicating a maxReplay equal to zero when
sending a ReplyCapability block. An unobservable node SHOULD deny the use of MURBs.

2.11. Protocol Version

This document describes version 1 of the protocol. The message PrefixBlock contains an
optional version indicator. If the protocol verion is absent protocol version 1 should be
assumed.

3. Layer Overview

The protocol is designed in four layers as shown in Figure 1.

Gwerder Expires 8 October 2022 Page 11

Internet-Draft MessageVortex Protocol April 2022

+ +
| Vortex Node |
| + + |
| Accounting |]
I I
I I
+ + |
| Routing | |
| ']
I
+ + + + |
|] Blending [] Blending []
I [I
I
+ + + + + +
| Transport | | Transport in | | Transport out |

Figure 1: Layer overview

Every participating node MUST implement the layer's blending, routing, and accounting.
There MUST be at least one incoming and one outgoing transport layer available to a node.
All blending layers SHOULD connect to the respective transport layers for sending and
receiving packets.

3.1. Transport Layer

The transport layer transfers the blended Vortex messages to the next vortex node and
stores it until the next blending layer picks up the message.

The transport layer infrastructure SHOULD NOT be specific to anonymous communication
and should contain significant portions of non-Vortex traffic.

3.2. Blending Layer

The blending layer embeds blended Vortex message into the transport layer data stream
and extracts the packets from the transport layer.

3.3. Routing Layer

The routing layer expands the information contained in MessageVortex packets, processes
them, and passes generated packets to the respective blending layer.

3.4. Accounting Layer

The accounting layer tracks all ephemeral identities authorized to use a MessageVortex
node and verifies the available quotas to an ephemeral identity.

Gwerder Expires 8 October 2022 Page 12

Internet-Draft MessageVortex Protocol April 2022

4. Vortex Message

4.1. Overview

Figure 2 shows a Vortex message. The enclosed sections denote encrypted blocks, and the
three- or four-letter abbreviations denote the key required for decryption. The abbreviation
k_h stands for the asymmetric host key, and sk_p is the symmetric peer key. The receiving
node obtains this key by decrypting MPREFIX with its host key k_h. Then, sk_s is the
symmetric sender key. When decrypting the MPREFIX block, the node obtains this key. The
sender key protects the header and routing blocks by guaranteeing that the node
assembling the message does not know about upcoming identities, operations, and
requests. The peer key protects the message, including its structure, from third-party
observers.

+-F-—-t-t-t-—t-t-t -ttt -+
[ITTCTI] TTIRT] |
[ITIPIIIHI[IO]] |
[IMII[IRIIIE[IIU]] P []
PIIITETTAITITI] A]
RIITIFILIDILIEI] Y |
[TE]]TITITTETIIN]] L |
FITITXTIIRIIIGI] O [}
0 e O I Y O O
[|X|]|] kh |sks |sks | D |]
|1 | | I |l
k h| sk p |

Figure 2: Vortex message overview

4.2. Message Prefix Block (MPREFIX)

The PrefixBlock contains a symmetrical key as defined in Appendix A.1 and is encrypted
using the host key of the receiving peer host. The symmetric key utilized MUST be from the
set advertised by a CapabilitiesReplyBlock (see Section 7.2.6). A node MAY choose any
parameters omitted in the CapabilitiesReplyBlock freely unless stated otherwise in Section
7.2.6. A node SHOULD avoid sending unencrypted PrefixBlocks. A host MAY reply to a
message with an unencrypted message block, but any reply to a message SHOULD be
encrypted.

The sender MUST choose a key that may be encrypted with the host key in the respective
PrefixBlock using the padding advertised by the CapabilitiesReplyBlock.

4.3. Inner Message Block

A node MUST always encrypt an InnerMessageBlock with the symmetric key of the
PrefixBlock to hide the inner structure of the message. The InnerMessageBlock SHOULD
always accommodate four or more payload chunks.

Gwerder Expires 8 October 2022 Page 13

Internet-Draft MessageVortex Protocol April 2022

4.3.1. Control Prefix Block

Control prefix (CPREFIX) and MPREFIX blocks share the same structure and logic as well as
containing the sender key sk_s. If an MPREFIX block is unencrypted, a node MAY omit the
CPREFIX block. An omitted CPREFIX block results in unencrypted control blocks (e.qg., the
HeaderBlock and RoutingBlock).

4.3.2. Control Blocks

The control blocks of the HeaderBlock and a RoutingBlock contain the core information to
process the payload.

4.3.2.1. Header Block
The header block (see HeaderBlock in Appendix A) contains the following information.

e |t MUST contain the local ephemeral identity of the routing block builder.
¢ |t MAY contain header requests.

|t MAY contain the solution to a PuzzleRequired block previously opposed in a header
request.

The list of header requests MAY be one of the following.

* Empty.
e Contain a single identity create request (HeaderRequestldentity).
e Contain a single increase quota request.

If a header block violates these rules, then a node MUST NOT reply to any header request.
The payload and routing blocks SHOULD still be added to the workspace and processed if
the message quota is not exceeded.

4.3.2.2. Routing Block
The routing block (see RoutingBlock in Appendix A) contains the following information.

e |t MUST contain a serial number uniquely identifying the routing block of this user. The
serial number MUST be unique during the lifetime of the routing block.

e |t MUST contain the same forward secret as the two prefix blocks and the header block.
[t MAY contain assembly and processing instructions for subsequent messages.
* |t MAY contain a reply block for messages assigned to the owner of the identity.

4.3.3. Payload Block

Each InnerMessageBlock with routing information SHOULD contain at least four
PayloadChunks.

5. General notes

The MessageVortex protocol is a modular protocol that allows the use of different
encryption algorithms. For its operation, a Vortex node SHOULD always support at least two
distinct types of algorithms, paddings, or modes such that they rely on two mathematical
problems.

Gwerder Expires 8 October 2022 Page 14

Internet-Draft MessageVortex Protocol April 2022

5.1. Supported Symmetric Ciphers

A node MUST support the following symmetric ciphers.

* AES128 (see [FIPS-AES] for AES implementation details).

* AES256.

e CAMELLIA128 (see [RFC3657] Chapter 3 for Camellia implementation details).
e CAMELLIA256.

A node SHOULD support any standardized key larger than the smallest key size.
A node MAY support Twofish ciphers (see [TWOFISH]).

5.2. Supported Asymmetric Ciphers

A node MUST support the following asymmetric ciphers.

* RSA with key sizes larger or equal to 2048 ([RFC8017]).
e ECC with named curves secp384rl, sect409k1 or secp521rl (see [SEC1]).

5.3. Supported MACs
A node MUST support the following Message Authentication Codes (MAC).

* SHA3-256 (see [ISO-10118-3] for SHA implementation details).
* RipeMD160 (see [ISO-10118-3] for RIPEMD implementation details).

A node SHOULD support the following MACs.

* SHA3-512.
* RipeMD256.
* RipeMD512.

5.4. Supported Paddings
A node MUST support the following paddings specified in [RFC8017].

¢ PKCS1 (see [RFC8017]).
¢ PKCS7 (see [RFC5958]).

5.5. Supported Modes

A node MUST support the following modes.
* CBC (see [RFC1423]) such that the utilized IV must be of equal length as the key.
* EAX (see [EAX]).

* GCM (see [RFC5288]).
* NONE (only used in special cases, see Section 10).

Gwerder Expires 8 October 2022 Page 15

Internet-Draft MessageVortex Protocol April 2022

A node SHOULD NOT use the following modes.

* NONE (except as stated when using the addRedundancy function).
* ECB.

A node SHOULD support the following modes.

* CTR ([RFC3686]).
* CCM ([RFC3610]).
* OCB ([RFC7253]).
* OFB ([MODES]I).

6. Blending

Each node supports a fixed set of blending capabilities, which may be different for incoming
and outgoing messages.

The following sections describe the blending mechanism. There are currently two blending
layers specified with one for the Simple Mail Transfer Protocol (SMTP, see [RFC5321]) and
the second for the Extensible Messaging and Presence Protocol (XMPP, see [RFC6120]). All
nodes MUST at least support "encoding=plain:0,256".

6.1. Blending in Attachments

There are two types of blending supported when using attachments.

e Plain binary encoding with offset (PLAIN).
* Embedding with F5 in an image (F5).

A node MUST support PLAIN blending for reasons of interoperability, whereas a node MAY
support blending using F5.

A routing block builder (RBB) MUST take care of sizing restrictions of the transport layer
when composing routing blocks

6.1.1. PLAIN embedding into attachments

A blending layer embeds a VortexMessage in a carrier file with an offset for PLAIN blending.
For replacing a file start, a node MUST use the offset 0. The routing node MUST choose the
payload file for the message and SHOULD use a credible payload type (e.g., MIMEtype) with
high entropy. Furthermore, it SHOULD prefix a valid header structure to avoid easy
detection of the Vortex message. Finally, a routing node SHOULD use a valid footer, if any,
to a payload file to improve blending.

Gwerder Expires 8 October 2022 Page 16

Internet-Draft MessageVortex Protocol April 2022

The blended Vortex message is embedded in one or more message chunks, each starting
with a chunk header. The chunk header consists of two unsigned integers of variable
length. The integer starts with the LSB, and if bit 7 is set, then another byte follows. There
cannot be more than four bytes whereas the last, fourth byte is always 8 bit. The three
preceding bytes have a payload of seven bits each, which results in a maximum number of
2729 bits. The first of the extracted numbers (modulo remaining document bytes starting
from the first and including byte of the chunk header) reflect the number of bytes in the
chunk after the chunk header. The second contains the number of bytes (again modulo
remaining document bytes) to be skipped after the current chunk to reach the next chunk.
There is no "last chunk" indicator. A gap or chunk may surpass the end of the file.

pos: 00h 02h 04h 06h 08h...400h 402h 404h 406h 408h 40Ah
val: 01 02 03 04 05 06 07 08 09 ...01 05 OA 0B OC OD OE OF f0 03 12 13

Embedding: "(plain:1024)"

Result: 0A 13 (+ 494 omitted bytes; then skip 12 bytes to next chunk)

A node SHOULD offer at least one PLAIN blending method and MAY offer multiple offsets for
incoming Vortex messages.

A plain blending is specified as follows.

plainEncoding = "("plain:" <numberOfBytesOfOffset>
["," <numberOfBytesOfOffset> J* ")"

6.1.2. F5 embedding into attachments

For F5, a blending layer embeds a Vortex message into a jpeg file according to [F5]. The
password for blending may be public, and a routing node MAY advertise multiple passwords.
The use of F5 adds approximately tenfold transfer volume to the message. A routing block
building node SHOULD only use F5 blending where appropriate.

A blending in F5 is specified as the following.
f5Encoding = "(F5:" <passwordString> ["," <PasswordString> J* ")"

Commas and backslashes in passwords MUST be escaped with a backslash whereas closing
brackets are treated as normal password characters unless they are the final character of
the encoding specification string.

6.2. Blending into an SMTP layer

Email messages with content MUST be encoded with Multipurpose Internet Mail Extensions
(MIME) as specified in [RFC2045]. All nodes MUST support BASE64 encoding and MUST test
all sections of a MIME message for the presence of a VortexMessage.

Gwerder Expires 8 October 2022 Page 17

Internet-Draft MessageVortex Protocol April 2022

A Vortex message is present if a block containing the peer key at the known offset of any
MIME part decodes correctly.

A node SHOULD support SMTP-blending for sending and receiving. For sending SMTP, the
specification in [RFC5321] must be used. TLS layers MUST always be applied when
obtaining messages using POP3 (as specified in [RFC1939] and [RFC2595]) or IMAP (as
specified in [RFC3501]). Any SMTP connection MUST employ a TLS encryption when passing
credentials.

6.3. Blending into an XMPP layer
For interoperability, an implementation SHOULD provide XMPP-blending.

Blending into XMPP traffic is performed using the [XEP-0231] extension of the XMPP
protocol.

PLAIN- and F5-blending are acceptable for this transport layer.

7. Routing

7.1. Vortex Message Processing

7.1.1. Processing of incoming Vortex Messages

An incoming message is considered initially unauthenticated. A node should consider a
VortexMessage as authenticated as soon as the ephemeral identity is known and is not
temporary.

For an unauthenticated message, the following rules apply.

* A node MUST ignore all routing blocks.

¢ A node MUST ignore all payload blocks.

* A node SHOULD accept identity creation requests in unauthenticated messages.

* A node MUST ignore all other header requests except identity creation requests.

* A node MUST ignore all identity creation requests belonging to an existing identity.

A message is considered authenticated as soon as the identity used in the header block is
known and not temporary. A node MUST NOT treat a message as authenticated if the
specified maximum number of replays is reached. For authenticated messages, the
following rules apply.

* A node MUST ignore identity creation requests.

* A node MUST replace the current reply block with the reply block provided in the routing
block (if any). The node MUST keep the reply block if none is provided.

* A node SHOULD process all header requests.
¢ A node SHOULD add all routing blocks to the workspace.
* A node SHOULD add all payload blocks to the workspace.

A routing node MUST decrement the message quota by one if a received message is
authenticated, valid, and contains at least one payload block. If a message is identified as a
duplicate according to reply protection, then a node MUST NOT decrement the message
quota.

Gwerder Expires 8 October 2022 Page 18

Internet-Draft MessageVortex Protocol April 2022

The message processing works according to the pseudo-code shown below.

Gwerder Expires 8 October 2022 Page 19

Internet-Draft MessageVortex Protocol April 2022

function incomming_message(VortexMessage blendedMessage) {
try{
msg = unblend(blendedMessage);
if(not msg) {
// Abort processing
throw exception("no embedded message found")
} else {
hdr = get_header(msg)
if(not known_identity(hdr.identity) {
if(get_requests(hdr) contains HeaderRequestldentity) {
create_new_identity(hdr).set temporary(true)
send_message(create _requirement(hdr))
} else {
// Abort processing
throw exception("identity unknown")

} else {
if(is_duplicate _or _replayed(msg)) {
// Abort processing
throw exception "duplicate or replayed message")
} else {
if(get_accounting(hdr.identity).is_temporary()) {
if(not verify_requirement(hdr.identity, msg)) {
get_accounting(hdr.identity).set temporary(false)
}
}
if(get_accounting(hdr).is_temporary()) {
throw exception("no processing on temporary identity")

}

/| Message authenticated
get_accounting(hdr.identity)
.register_for_replay protection(msg)
if(not verify_mtching_forward_secrets(msg)) {
throw exception("forward secret missmatch")
}
if(contains_payload(msg)) {
if(get_accounting(hdr.identity
.decrement_message_quota()) {
while index,nextPayloadBlock
== get _next_payload block(msg) {
add_workspace(header.identity,
index, nextPayloadBlock)

while nextRoutingBlock = get next routing block(msg) {
add_workspace(hdr.identity,

add_routing(nextRoutingBlock))

}

process_reserved_mapping_space(msg)

while nextRequirement = get_next_requirement(hdr) {
add_workspace(hdr.identity, nextRequirement)

} else {
throw exception("Message quota exceeded")
}
}
}

Gwerder Expires 8 October 2022 Page 20

Internet-Draft MessageVortex Protocol April 2022

} catch(exception e) {
// Message processing failed
throw e;
}
}

7.1.2. Processing of Routing Blocks in the Workspace
A routing workspace consists of the following items.

* The linked identity, which determines the lifetime of the workspace.

e The linked routing combos (RoutingCombo).

* A payload chunk space with the following multiple subspaces available:

ID 0 represents a message to be embedded (when reading) or a message to be
extracted to the user (when written).

ID 1 to ID maxPayloadBlocks represent the payload chunk slots in the target
message.

All blocks between ID maxPayloadBlocks + 1 to ID 32766 belong to a temporary
routing block-specific space.
ID 32767 MUST be used to signal a solicited reply block.

o All blocks between ID 32768 to ID 65535 belong to a shared space available to all
operations of the identity.

o]

]

(o]

]

The accounting layer typically triggers processing and represents either a cleanup action or
a routing event. A cleanup event deletes the following information from all workspaces.

 All processed routing combos.

¢ All routing combos with expired usagePeriod.

¢ All payload chunks exceeding the maxProcess time.
e All expired objects.

e All expired puzzles.

* All expired identities.

* All expired replay protections.

Note that maxProcessTime reflects the number of seconds since the arrival of the last octet
of the message at the transport layer facility. A node SHOULD NOT take additional
processing time (e.q., for anti-UBE or anti-virus) into account.

The accounting layer triggers routing events occurring at least the minProcessTime after
the last octet of the message arrived at the routing layer. A node SHOULD choose the latest
possible moment at which the peer node receives the last octet of the assembled message
before the maxProcessTime is reached. The calculation of this last point in time where a
message may be set SHOULD always assume that the target node is working. A sending
node SHOULD choose the time within these bounds randomly. An accounting layer MAY
trigger multiple routing combos in bulk to further obfuscate the identity of a single
transport message.

First, the processing node escapes the payload chunk at ID O if needed (e.g., a non-special

block is starting with a backslash). Next, it executes all processing instructions of the
routing combo in the specified sequence. If an instruction fails, then the block at the target

Gwerder Expires 8 October 2022 Page 21

Internet-Draft MessageVortex Protocol April 2022

ID of the operation remains unchanged. The routing layer proceeds with the subsequent
processing instructions by ignoring the error. For a detailed description of the operations,
see Section 7.4. If a node succeeds in building at least one payload chunk, then a
VortexMessage is composed and passed to the blending layer.

7.1.3. Processing of Outgoing Vortex Messages

The blending layer MUST compose a transport layer message according to the specification
provided in the routing combo. It SHOULD choose any decoy message or steganographic
carrier in such a way that the Dead Parrot syndrome, as specified in [DeadParrot], is
avoided.

7.2. Header Requests

Header requests are control requests for the anonymization system. Messages with
requests or replies only MUST NOT affect any quota.

7.2.1. Request New Ephemeral Identity

Requesting a new ephemeral identity is performed by sending a message containing a
header block with the new identity and an identity creation request
(HeaderRequestldentity) to a node. The node MAY send an error block (see Section 7.3.1) if
it rejects the request.

If a node accepts an identity creation request, then it MUST send a reply. A node accepting
a request without a requirement MUST send back a special block containing "no error". A
node accepting a request under the precondition of a requirement to be fulfilled MUST send
a special block containing a requirement block.

A node SHOULD NOT reply to any cleartext requests if the node does not want to officially
disclose its identity as a Vortex node. A node MUST reply with an error block if a valid
identity is used for the request.

7.2.2. Request Message Quota

Any valid ephemeral identity may request an increase of the current message quota to a
specific value at any time. The request MUST include a reply block in the header and may
contain other parts. If a requested value is lower than the current quota, then the node
SHOULD NOT refuse the quota request and SHOULD send a "no error" status.

A node SHOULD reply to a HeaderRequestincreaseMessageQuota request (see Appendix A)
of a valid ephemera identity. The reply MUST include a requirement, an error message or a
"no error" status message.

7.2.3. Request Increase of Message Quota

A node may request to increase the current message quota by sending a
HeaderRequestincreaseMessageQuota request to the routing node. The value specified
within the node is the new quota. HeaderRequestincreaseMessageQuota requests MUST
include a reply block, and a node SHOULD NOT use a previously sent MURB to reply.

If the requested quota is higher than the current quota, then the node SHOULD send a "no
error" reply. If the requested quota is not accepted, then the node SHOULD send a
requestedQuotaOutOfBand reply.

A node accepting the request MUST send a RequirementBlock or a "no error block."

Gwerder Expires 8 October 2022 Page 22

Internet-Draft MessageVortex Protocol April 2022

7.2.4. Request Transfer Quota

Any valid ephemeral identity may request to increase the current transfer quota to a
specific value at any time. The request MUST include a reply block in the header and may
contain other parts. If a requested value is lower than the current quota, then the node
SHOULD NOT refuse the quota request and SHOULD send a "no error" status.

A node SHOULD reply to a eaderRequestincreaseTransferQuota request (see Appendix A) of
a valid ephemeral identity. The reply MUST include a requirement, an error message or a
"no error" status message.

7.2.5. Query Quota

Any valid ephemeral identity may request the current message and transfer quota. The
request MUST include a reply block in the header and may contain other parts.

A node MUST reply to a HeaderRequestQueryQuota request (see Appendix A), which MUST
include the current message quota and the current message transfer quota. The reply to
this request MUST NOT include a requirement.

7.2.6. Request Capabilities

Any node MAY request the capabilities of another node, which include all information
necessary to create a parsable VortexMessage. Any node SHOULD reply to any encrypted
HeaderRequestCapability.

A node SHOULD NOT reply to cleartext requests if the node does not want to officially
disclose its identity as a Vortex node. A node MUST reply if a valid identity is used for the
request, and it MAY reply to unknown identities.

7.2.7. Request Nodes

A node may ask another node for a list of routing node addresses and keys, which may be
used to bootstrap a new node and add routing nodes to increase the anonymization of a
node. The receiving node of such a request SHOULD reply with a requirement
(e.g.,RequirementPuzzleRequired).

A node MAY reply to a HeaderRequest request (see Appendix A) of a valid ephemeral
identity, and the reply MUST include a requirement, an error message, or a "no error" status
message. A node MUST NOT reply to an unknown identity and SHOULD always reply with
the same result set to the same identity.

7.2.8. Request Identity Replace

This request type allows a receiving node to replace an existing identity with the identity
provided in the message and is required if an adversary manages to deny the usage of a
node (e.qg., by deleting the corresponding transport account). Any sending hode may
recover from such an attack by sending a valid authenticated message to another identity
to provide the new transport and key details.

A node SHOULD reply to such a request from a valid known identity, and the reply MUST
include an error message or a "no error" status message.

Gwerder Expires 8 October 2022 Page 23

Internet-Draft MessageVortex Protocol April 2022

7.2.9. Request Upgrade

This request type allows a node to request a new version of the software in an anonymous,
unlinked manor. The identifier MUST identify the software product uniquely. The version
MUST reflect the version tag of the currently installed version or a similarly usable tag.

7.3. Special Blocks

Special blocks are payload messages that reflect messages from one node to another and
are not visible to the user. A special block starts with the character sequence "\special' (or
5Ch 73h 70h 65h 63h 69h 61h 6Ch) followed by a DER-encoded special block
(SpecialBlock). Any non-special message decoding to ID 0 in a workspace starting with this
character sequence MUST escape all backslashes within the payload chunk with an
additional backslash.

7.3.1. Error Block

An error block may be sent as a reply contained in the payload section. The error block is
embedded in a special block and sent with any provided reply block. Error messages
SHOULD contain the serial number of the offending header block and MAY contain human-
readable text providing additional messages about the error.

7.3.2. Requirement Block

If a node receives a requirement block, then it MUST assume that the request block is
accepted, is not yet processed, and is to be processed if it meets the contained
requirement. A node MUST process a request as soon as the requirement is fulfilled and
MUST resend the request as soon as it meets the requirement.

A node MAY reject a request, accept a request without a requirement, accept a request
upon payment (RequirementPaymentRequired), or accept a request upon solving a proof of
work puzzle (RequirementPuzzleRequired).

7.3.2.1. Puzzle Requirement

If a node requests a puzzle, then it MUST send a RequirementPuzzleRequired block. The
puzzle requirement is solved if the node receiving the puzzle replies with a header block
that contains the puzzle block, and the hash of the encoded block begins with the bit
sequence mentioned in the puzzle within the period specified in the field 'valid.'

A node solving a puzzle requires sending a VortexMessage to the requesting node, which
MUST contain a header block that includes the puzzle block and MUST have a MAC
fingerprint starting with the bit sequence as specified in the challenge. The receiving node
calculates the MAC from the unencrypted DER-encoded HeaderBlock with the algorithm
specified by the node. The sending node may achieve the requirement by adding a
proofOfWork field to the HeaderBlock containing any content fulfilling the criteria. The
sending node SHOULD keep the proofOfWork field as short as possible.

7.3.2.2. Payment Requirement

If a node requests a payment, then it MUST send a RequirementPaymentRequired block. As
soon as the requested fee is paid and confirmed, the requesting node MUST send a "no
error" status message. The usage period 'valid' describes the period during which the

Gwerder Expires 8 October 2022 Page 24

Internet-Draft MessageVortex Protocol April 2022

payment may be carried out. A node MUST accept the payment if it occurs within the 'valid'
period but is confirmed later. A node SHOULD return all unsolicited payments to the sending
address.

7.3.2.3. Upgrade

If a node requests an upgrade, a ReplyUpgrade block MAY be sent. The block must contain
the identifier and version of the most recent software version. The blob MAY contain the
software if there is a newer one available.

7.4. Routing Operations

Routing operations are contained in a routing block and processed upon arrival of a
message or when compiling a new message. All operations are reversible, and no operation
is available for generating decoy traffic, which may be used through encryption of an
unpadded block or the addRedundancy operation.

All payload chunk blocks inherit the validity time from the message routing combos as
arrival time + max(maxProcessTime).

When applying an operation to a source block, the resulting target block inherits the
expiration of the source block. When multiple expiration times exist, the one furthest in the
future is applied to the target block. If the operation fails, then the target expiration
remains unchanged.

7.4.1. Mapping Operation

The straightforward mapping operation is used in inOperations of a routing block to map
the routing block's specific blocks to a permanent workspace.

7.4.2. Split and Merge Operations

The split and merge operations allow splitting and recombining message chunks. A node
MUST adhere to the following constraints.

* The operation must be applied at an absolute (measuring in bytes) or relative
(measured as a float value in the range 0>value>100) position.

e All calculations must be performed according to IEEE 754 [IEEE754] and in 64-bit
precision.

* If a relative value is a non-integer result, then a floor operation (i.e., cutting off all non-
integer parts) determines the number of bytes.

¢ If an absolute value is negative, then the size represents the number of bytes counted
from the end of the message chunk.

 If an absolute value is greater than the number of bytes in a block, then all bytes are
mapped to the respective target block, and the other target block becomes a zero byte-
sized block.

An operation MUST fail if relative values are equal to, or less than zero. An operation MUST
fail if a relative value is equal to, or greater than 100. All floating-point operations must be
performed according to [IEEE754] and in 64-bit precision.

Gwerder Expires 8 October 2022 Page 25

Internet-Draft MessageVortex Protocol April 2022

7.4.3. Encrypt and Decrypt Operations

Encryption and decryption are executed according to the standards mentioned above. An
encryption operation encrypts a block symmetrically and places the result in the target
block. The parameters MUST contain IV, padding, and cipher modes. An encryption
operation without a valid parameter set MUST fail.

7.4.4. Add and Remove Redundancy Operations

The addRedundancy and removeRedundancy operations are core to the protocol. They may
be used to split messages and distribute message content across multiple routing nodes.
The operation is separated into three steps.

1. Pad the input block to a multiple of the key block size in the resulting output blocks.
2. Apply a Vandermonde matrix with the given sizes.
3. Encrypt each resulting block with a separate key.

The following sections describe the order of the operations within an addRedundancy
operation. For a removeRedundancy operation, invert the functions and order. If the
removeRedundancy has more than the required blocks to recover the information, then it
should take only the required number beginning from the smallest. If a seed and PRNG are
provided, then the removeRedundancy operation MAY test any combination until recovery
is successful.

7.4.4.1. Padding Operation

Padding is done in multiple steps. First, we calculate the padding value p. We then
concatenate the padding value p as 32-bit little-endian unit with the message and fill the
remaining bytes required with the seeded PRNG.

A processing node calculates the final length of all payload blocks, including redundancy.
This is done in three steps, followed by the calculation of the padding value p.

1. i=len(<input block>) [calculate the size of the input block]

2. e=lcm(<Blocksize of output encyrption in # bytes>,<# of output blocks>) [Calculate
Minimum size of the output block]

3. I=roof((i+4+C2)/e)*e [Calculate the final length of the padded stream suitable for the
subsequent operations. C2 is a constant which is either provided by the RBB or 0 if not
specified.]

4, p=i+(CLl*l(mod (roof((27~32-1-i)/1)*))) [Calculate padding value p. C1 is a positive
integer constant and MUST be provided by the RBB to maintain diagnosability.]

The remainder of the input block, up to length L, is padded with random data. A routing
block builder should specify the value of the randomlinteger. If not specified, the routing
node may choose a random positive integer value. A routing block builder SHOULD specify
a PRNG and a seed used for this padding. If GF(16) is applied, then all numbers are treated
as little-endian representations. Only GF(8) and GF(16) are allowed fields.

The length of 0 is a valid length

This padding guarantees that each resulting block matches the block size of the
subsequent encryption operation and does not require further padding.

Gwerder Expires 8 October 2022 Page 26

Internet-Draft MessageVortex Protocol April 2022

For padding removal, the padding p at the start is first removed as a little-endian integer.
Second, the length of the output block is calculated by applying <output block size in
bytes>=p (mod <input block size in bytes>-4)

7.4.4.2. Apply Matrix

Next, the input block is organized in a data matrix D of dimensions (inrows, incols) where
incols=(<number of data blocks>-<number of redundancy blocks>) and inrows=L/
(<number of data blocks>-<number of redundancy blocks>). The input block data is first
distributed in this matrix across, and then down.

Next, the data matrix D is multiplied by a Vandermonde matrix V with its number of rows
equal to the incols calculated and columns equal to the <number of data blocks>. The
content of the matrix is formed by v(i,j)=pow(i,j), where i reflects the row number starting
at 0, and j reflects the column number starting at 0. The calculations described must be
carried out in the GF noted in the respective operation to be successful. The completed
operation results in matrix A.

7.4.4.3. Encrypt Target Block

Each row vector of A is a new data block encrypted with the corresponding encryption key
noted in the keys of the addRedundancyOperation. If there are not enough keys available,
then the keys used for encryption are reused from the beginning after the final key is used.
A routing block builder SHOULD provide enough keys so that all target blocks may be
encrypted with a unique key. All encryptions SHOULD NOT use padding.

7.5. Processing of Vortex Messages

The accounting layer triggers processing according to the information contained in a
routing block in the workspace. All operations MUST be executed in the sequence provided
in the routing block, and any failing operation must leave the result block unmodified.

All workspace blocks resulting in IDs of 1 to maxPayloadBlock are then added to the
message and passed to the blending layer with appropriate instructions.

8. Accounting

8.1. Accounting Operations
The accounting layer has two types of operations.

* Time-based (e.qg., cleanup jobs and initiation of routing).

* Routing triggered (e.g., updating quotas, authorizing operations, and pickup of
incoming messages).

Implementations MUST provide sufficient locking mechanisms to guarantee the integrity of
accounting information and the workspace at any time.

8.1.1. Time-Based Garbage Collection

The accounting layer SHOULD keep a list of expiration times. As soon as an entry (e.g.,
payload block or identity) expires, the respective structure should be removed from the
workspace. An implementation MAY choose to remove expired items periodically or when
encountering them during normal operation.

Gwerder Expires 8 October 2022 Page 27

Internet-Draft MessageVortex Protocol April 2022

8.1.2. Time-Based Routing Initiation

The accounting layer MAY keep a list of when a routing block is activated. For improved
privacy, the accounting layer should use a slotted model where, whenever possible,
multiple routing blocks are handled in the same period, and the requests to the blending
layers are mixed between the transactions.

8.1.3. Routing Based Quota Updates

A node MUST update quotas on the respective operations. For example, a node MUST
decrease the message quota before processing routing blocks in the workspace and after
the processing of header requests.

8.1.4. Routing Based Authorization

The transfer quota MUST be checked and decreased by the number of data bytes in the
payload chunks after an outgoing message is processed and fully assembled. The message
quota MUST be decreased by one on each routing block triggering the assembly of an
outgoing message.

8.1.5. Ephemeral Identity Creation

Any packet may request the creation of an ephemeral identity. A node SHOULD NOT accept
such a request without a costly requirement since the request includes a lifetime of the
ephemeral identity. The costs for creating the ephemeral identity SHOULD increase if a
longer lifetime is requested.

9. IANA Considerations
This memo includes no request to IANA.

Additional encryption algorithms, paddings, modes, blending layers or puzzles MUST be
added by writing an extension to this or a subsequent RFC. For testing purposes, IDs above
1,000,000 should be used.

10. Security Considerations

The MessageVortex protocol should be understood as a toolset instead of a fixed product.
Depending on the usage of the toolset, anonymity and security are affected. For a detailed
analysis, see [MVAnalysis].

The primary goals for security within this protocol rely on the following focus areas:

* Confidentiality
* Integrity
* Availability
* Anonymity
o Third-party anonymity (unobservability)
o Sender anonymity (sender is not known to the recipient if not disclosed)

o Receiver anonymity (recipient is not known to the sender if using a reply block for
routing)

Gwerder Expires 8 October 2022 Page 28

Internet-Draft MessageVortex Protocol April 2022

* Detectability
The first three are known as the CIA triad.

All of these aspects are affected by the usage of the protocol, and the following sections
provide additional information on how they impact the primary goals.

10.1. CIA Triad

The Vortex protocol does not rely on any encryption of the transport layer for confidentiality
since Vortex messages are already encrypted. However - Additional transport layer
encryption may help to make it harder to identify blended messages on the transport layer
when not crafted individually.

All authentification, integrity and encryption schemes are already part of the
MessageVortex protocol and do not rely on any other mechanism except for the mechanism
of reliable transport. However, even an unreliable transport may be used to a certain extent
by offering redundant paths in the built routing block. This will not introduce a general retry
mechanism but may counter outages in the routing nodes or temporary outages in the
connectivity of MessageVortex nodes.

10.2. Anonymity and Detectability

Anonymity is affected by the inner workings of the blending layer and routing block outline
in many ways. In general, A Vortex message cannot be read by anyone except the peer
nodes and routing block builder. The presence of a Vortex message may be detected
through the typical high entropy of an encrypted file, broken structures of a carrier file,
meaningless content of a carrier file, or the contextless communication of the transport
layer with its peer partner. A blending layer SHOULD minimize the possibility of simple
detection by minimizing these effects.

Proposing a general scheme is useless, as such a scheme would allow identification of
blending layer. Instead a list of DOs and DON'Ts is provided as an excerpt from[MVAnalysis].

10.2.1. Blending Layer Considerations

A Blending layer should have one or more message types to send. The content of these
message highly affect the detecatbility of a protocol. The messages should be clearly
machine generatet (e.qg., statistics, password recovery requests, event notifications) that
contain attachments or images (carrier content) in an generated manner (no static
imagery). The size of this carrier content should be chosen statically and should contain
continuously changing content. This requirement has massive effects on implementations
of Vortex nodes. A context of the content (e.g., in a timely context) should be maintained.
In general cantent with high compression (e.g., jpeg imagery) is used in the context of the
internet. If not indicated otherwise this rule should be followed.

Ideally, carrier files SHOULD NOT have inner structures such that the payload is comparable
to valid content. To achieve undetectability by a human reviewer, a routing block builder
should use jpeg and F5 instead of PLAIN blending. This approach however, increases the
protocol overhead by approximately tenfold.

Gwerder Expires 8 October 2022 Page 29

Internet-Draft MessageVortex Protocol April 2022

10.2.2. Routing and Accounting Layer Considerations

The two layers of 'routing' and 'accounting' have the deepest insight into a Vortex
message's inner workings. Each is aware of the immediate peer sender and the peer
recipients of all payload chunks. As decoy traffic is generated by combining chunks and
applying redundancy calculations, a node can never know if a malfunction (e.g., during a
recovery calculation) was intended. Therefore, a node is unable to distinguish a failed
transaction from a terminated transaction as well as content from decoy traffic.

A routing block builder SHOULD follow the following rules not to compromise a Vortex
message's anonymity.

* All operations applied SHOULD be credibly involved in a message transfer. The
combined knowledge of multiple subsequent routing nodes should not allow judgement
of wheather it is real or decoy traffic.

¢ A sufficient subset of the result of an addRedundancy operation should always be sent
to peers to allow recovery of the data built.

* The anonymity set of a message should be sufficiently large to avoid legal prosecution
of all jurisdictional entities involved, even if a certain amount of the anonymity set
cooperates with an adversary.

* Encryption and decryption SHOULD follow normal usage whenever possible by avoiding
the encryption of a block on a node with one key and decrypting it with a different key
on the same or adjacent node.

e Traffic peaks SHOULD be uniformly distributed within the entire anonymity set. This
restriction applies to all traffic as a whole. A single message may generate unbalanced
traffic.

* A routing block SHOULD be used for a limited number of messages. If used as a
message block for the node, then it should be used only once.

* A block builder SHOULD use the HeaderRequestReplaceldentity block to update the
reply to routing blocks regularly. Implementers should always remember that the same
routing block is identifiable by its structure.

10.3. Active Adversaries

An active adversary cannot use blocks from other routing block builders. While the
adversary may falsify the result by injecting an incorrect message chunk or not sending a
message, such message disruptions may be detected by intentionally routing information
to the routing block builder (RBB) node. If the Vortex message does not carry the
information expected, then the node may safely assume that one of the involved nodes is
misbehaving. A block building node MAY calculate the reputation for involved nodes over
time and MAY build redundancy paths into a routing block to withstand such malicious
nodes.

Receiver anonymity is at risk if the handling of the message header and content is not done
with care. An attacker might send a bugged message (e.g., with a DKIM header) to de-
anonymize a recipient. Careful attention is required when handling anything other than
local references when processing, verifying or rendering a message.

Gwerder Expires 8 October 2022 Page 30

Internet-Draft

MessageVortex Protocol April 2022

11. References

11.1. Normative References

[CCITT.X208.1988] International Telephone and Telegraph Consultative Committee,

"Specification of Abstract Syntax Notation One (ASN.1)", CCITT
Recommendation X.208, November 1998.

[CCITT.X680.2002] International Telephone and Telegraph Consultative Committee,

[EAX]

[F5]

[FIPS-AES]

[IEEE754]

[1SO-10118-3]

[MODES]

[RFC1423]

[RFC2119]

[RFC3610]

[RFC3657]

[RFC3686]

[RFC5234]

Gwerder

"Abstract Syntax Notation One (ASN.1): Specification of Basic Notation",
November 2002.

Bellare, M., Rogaway, P.,, and D. Wagner, "The EAX Mode of Operation",
2011.

Westfeld, A., "F5 - A Steganographic Algorithm - High Capacity Despite
Better Steganalysis", 24 October 2001.

Federal Information Processing Standard (FIPS), "Specification for the
ADVANCED ENCRYPTION STANDARD (AES)", November 2011.

IEEE, "754-2008 - IEEE Standard for Floating-Point Arithmetic", 29 August
2008.

International Organization for Standardization, "ISO/IEC 10118-3:2004 --
Information Technology -- Security Techniques -- Hash-Functions -- Part 3:
Dedicated Hash-Functions", March 2004.

National Institute for Standards and Technology (NIST), "Recommendation
for Block Cipher Modes of Operation: Methods and Techniques", December
2001.

Balenson, D., "Privacy Enhancement for Internet Electronic Mail: Part Il
Algorithms, Modes, and Identifiers", RFC 1423, DOI 10.17487/RFC1423,
February 1993, <https://www.rfc-editor.org/info/rfc1423>.

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels",
BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
editor.org/info/rfc2119>.

Whiting, D., Housley, R., and N. Ferguson, "Counter with CBC-MAC (CCM)",
RFC 3610, DOI 10.17487/RFC3610, September 2003, <https://www.rfc-
editor.org/info/rfc3610>.

Moriai, S. and A. Kato, "Use of the Camellia Encryption Algorithm in
Cryptographic Message Syntax (CMS)", RFC 3657, DOI 10.17487/RFC3657,
January 2004, <https://www.rfc-editor.org/info/rfc3657>.

Housley, R., "Using Advanced Encryption Standard (AES) Counter Mode With
IPsec Encapsulating Security Payload (ESP)", RFC 3686, DOI 10.17487/
RFC3686, January 2004, <https://www.rfc-editor.org/info/rfc3686>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax Specifications:
ABNF", STD 68, RFC 5234, DOI 10.17487/RFC5234, January 2008, <https://
www.rfc-editor.org/info/rfc5234>.

Expires 8 October 2022 Page 31

https://www.rfc-editor.org/info/rfc1423
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3610
https://www.rfc-editor.org/info/rfc3657
https://www.rfc-editor.org/info/rfc3686
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234

Internet-Draft

[RFC5288]

[RFC5958]

[RFC7253]

[RFC8017]

[SEC1]
[TWOFISH]

[XEP-0231]

11.2.

MessageVortex Protocol April 2022

Salowey, J., Choudhury, A., and D. McGrew, "AES Galois Counter Mode
(GCM) Cipher Suites for TLS", RFC 5288, DOI 10.17487/RFC5288, August
2008, <https://www.rfc-editor.org/info/rfc5288>.

Turner, S., "Asymmetric Key Packages", RFC 5958, DOI 10.17487/RFC5958,
August 2010, <https://www.rfc-editor.org/info/rfc5958>.

Krovetz, T. and P. Rogaway, "The OCB Authenticated-Encryption Algorithm",
RFC 7253, DOI 10.17487/RFC7253, May 2014, <https://www.rfc-editor.org/
info/rfc7253>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch, "PKCS #1: RSA
Cryptography Specifications Version 2.2", RFC 8017, DOI 10.17487/
RFC8017, November 2016, <https://www.rfc-editor.org/info/rfc8017>.

Certicom Research, "SEC 1: Elliptic Curve Cryptography", 21 May 2009.

Schneier, B., "The Twofish Encryptions Algorithm: A 128-Bit Block Cipher,
1st Edition", March 1999.

Peter, S.A. and P. Simerda, "XEP-0231: Bits of Binary", 3 September 2008,
<https://xmpp.org/extensions/xep-0231.html>.

Informative References

[DeadParrot] Houmansadr, A., Burbaker, C., and V. Shmatikov, "The Parrot is Dead:

[KAnon]

[MVAnalysis]

[RFC1939]

[RFC2045]

[RFC2595]

[RFC3501]

[RFC5321]

[RFC6120]

Gwerder

Observing Unobservable Network Communications", 2013, <https://
people.cs.umass.edu/~amir/papers/parrot.pdf>.

Ahn, L., Bortz, A., and N.J. Hopper, "k-Anonymous Message Transmission",
2003.

Gwerder, M., "MessageVortex", 2018, <https://messagevortex.net/devel/
messageVortex.pdf>.

Myers, J. and M. Rose, "Post Office Protocol - Version 3", STD 53, RFC 1939,
DOI 10.17487/RFC1939, May 1996, <https://www.rfc-editor.org/info/
rfc1939>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies", RFC 2045, DOI 10.17487/
RFC2045, November 1996, <https://www.rfc-editor.org/info/rfc2045>.

Newman, C., "Using TLS with IMAP, POP3 and ACAP", RFC 2595, DOI
10.17487/RFC2595, June 1999, <https://www.rfc-editor.org/info/rfc2595>.

Crispin, M., "INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1",
RFC 3501, DOI 10.17487/RFC3501, March 2003, <https://www.rfc-
editor.org/info/rfc3501>.

Klensin, J., "Simple Mail Transfer Protocol", RFC 5321, DOI 10.17487/
RFC5321, October 2008, <https://www.rfc-editor.org/info/rfc5321>.

Saint-Andre, P., "Extensible Messaging and Presence Protocol (XMPP): Core",
RFC 6120, DOI 10.17487/RFC6120, March 2011, <https://www.rfc-
editor.org/info/rfc6120>.

Expires 8 October 2022 Page 32

https://www.rfc-editor.org/info/rfc5288
https://www.rfc-editor.org/info/rfc5958
https://www.rfc-editor.org/info/rfc7253
https://www.rfc-editor.org/info/rfc7253
https://www.rfc-editor.org/info/rfc8017
https://xmpp.org/extensions/xep-0231.html
https://people.cs.umass.edu/~amir/papers/parrot.pdf
https://people.cs.umass.edu/~amir/papers/parrot.pdf
https://messagevortex.net/devel/messageVortex.pdf
https://messagevortex.net/devel/messageVortex.pdf
https://www.rfc-editor.org/info/rfc1939
https://www.rfc-editor.org/info/rfc1939
https://www.rfc-editor.org/info/rfc2045
https://www.rfc-editor.org/info/rfc2595
https://www.rfc-editor.org/info/rfc3501
https://www.rfc-editor.org/info/rfc3501
https://www.rfc-editor.org/info/rfc5321
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6120

Internet-Draft MessageVortex Protocol April 2022

Appendix A. The ASN.1 schema for Vortex messages

The following sections contain the ASN.1 modules specifying the MessageVortex Protocol.

Gwerder Expires 8 October 2022 Page 33

Internet-Draft MessageVortex Protocol April 2022

A.1l. The Main MessageVortex Blocks

Gwerder Expires 8 October 2022 Page 34

Internet-Draft MessageVortex Protocol April 2022

MessageVortex-Schema DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS PrefixBlock, InnerMessageBlock, RoutingBlock,
maxWorkspacelD;
IMPORTS SymmetricKey, AsymmetricKey, MacAlgorithmSpec, CipherSpec
FROM MessageVortex-Ciphers
HeaderRequest
FROM MessageVortex-Requests
PayloadOperation, MapBlockOperation
FROM MessageVortex-Operations

UsagePeriod, BlendingSpec
FROM MessageVortex-Helpers;

_kekskskskokokkokokokokkkskokok ok kskokokkkskokokk sk kokokok sk kokokosk sk kokokosk sk skokok sk sk sk okokosk sk sk skokosk sk kkok ok

-- Constant definitions
Skekekskekokskokokskeskokskokoskskoskokskoskoskskok ok koskokskok sk kosk sk kosk sk skosk sk skosk sk kok sk kok sk kok sk kok sk kokskkosk sk kok sk

-- maximum serial number

maxSerial INTEGER ::= 4294967295

-- maximum number of administrative requests

maxNumOfRequests INTEGER ::= 8

-- maximum number of seconds which the message might be delayed
-- in the local queue (starting from startOffset)
maxDurationOfProcessing INTEGER ::= 86400

-- maximum id of an operation

minWorkspacelD INTEGER ::= 32768

-- maximum number of routing blocks in a message
maxRoutingBlks INTEGER ::= 127

-- maximum number a block may be replayed
maxNumOfReplays INTEGER ::= 127

-- maximum number of payload chunks in a message
maxPayloadBlks INTEGER ::= 127

-- maximum number of seconds a proof of non revocation may be old
maxTimeCachedProof INTEGER ::= 86400

-- The maximum ID of the workspace

maxWorkspaceld INTEGER ::= 65535

-- The maximum number of assembly instructions per combo
maxAssemblylnstr INTEGER ::= 255

_SReksRkskokokRkkokokkkkokokkkkokokkkkokokk sk kokokk sk kokokok sk kkokosk sk sk kok sk kkkok sk kkkk sk k >k k ok ok

-- Types

__3kskokokokeske sk sk ko skoskosk ok ok ok ok ok ok Sk Sk sk sk sk sk ok sk ok ok sk ke sk sk sk sk sk sk ok ok ok ok sk ke sk sk sk sk sk skosk sk ok ok sk sk sk ke sk skoskok ko ok
Puzzleldentifier ::= OCTET STRING (SIZE(0..32))

ChainSecret ::= OCTET STRING (SIZE (16..64))

_SkekRkskokokRkkokokkkkokokkkkokokkkkokokk sk kokokk sk kokokok sk kkokosk sk sk kokosk sk sk kok sk kkkk sk kkk ok ok

-- Block Definitions
Skekekskekokskeskokskoskok sk kok sk ko ko kok sk kok ko kok sk sk oke sk sk ke sk sk k sk sk ke skok sk sk sk sk skok sk skok sk kok sk kok sk kok sk kok sk
PrefixBlock ::= SEQUENCE {

version [0] INTEGER OPTIONAL,

key [2] SymmetricKey

InnerMessageBlock ::= SEQUENCE {
padding OCTET STRING,
prefix CHOICE {

Gwerder Expires 8 October 2022 Page 35

Internet-Draft MessageVortex Protocol April 2022

plain [11011] PrefixBlock,

-- contains prefix encrypted with receivers
-- public key

encrypted [11012] OCTET STRING

+
header CHOICE {
-- debug/internal use only
plain [11021] HeaderBlock,
-- contains encrypted identity block
encyrpted [11022] OCTET STRING
-- contains signature of Identity [as stored in
-- HeaderBlock; signed unencrypted HeaderBlock without
-- Tag]
identitySignature OCTET STRING,
-- contains routing information (next hop) for the
-- payloads
routing [11001] CHOICE {
plain [11031] RoutingBlock,
-- contains encrypted routing block
encyrpted [11032] OCTET STRING

contains the actual payload
payload SEQUENCE (SIZE (0..maxPayloadBlks))
OF OCTET STRING
}

HeaderBlock ::= SEQUENCE {
-- Public key of the identity representing this
-- transmission
identityKey AsymmetricKey,
-- serial identifying this block
serial INTEGER (0..maxSerial),
-- number of times this block may be replayed
-- (Tuple is identityKey, serial while
-- UsagePeriod of block)

maxReplays INTEGER (0..maxNumOfReplays),
-- subsequent Blocks are not processed before
-- valid time.

-- Host may reject too long retention.
-- Recomended validity support >=1Mt.
valid UsagePeriod,
-- contains the MAC-Algorithm used for signing
signAlgorithm MacAlgorithmSpec,
-- contains administrative requests such as
-- quota requests
requests SEQUENCE

(SIZE (0..maxNumOfRequests))

OF HeaderRequest ,
-- Reply Block for the requests
requestReplyBlock RoutingCombo OPTIONAL,
-- padding and identitifier required to solve
-- the cryptopuzzle
identifier [12201] Puzzleldentifier OPTIONAL,
-- This is for solving crypto puzzles
proofOfWork[12202] OCTET STRING OPTIONAL

Gwerder Expires 8 October 2022 Page 36

Internet-Draft MessageVortex Protocol April 2022

RoutingBlock ::= SEQUENCE {
-- contains the routingCombos
routing [331] SEQUENCE
(SIZE (0..maxRoutingBlks))
OF RoutingCombo,
-- contains the mapping operations to map
-- payloads to the workspace
mappings [332] SEQUENCE
(SIZE (0..maxPayloadBIks))
OF MapBlockOperation,
-- contains a routing block which may be used
-- when sending error messages back to the quota
-- owner this routing block may be cached for
-- future use
replyBlock [332] SEQUENCE {
murb RoutingCombo,
maxReplay INTEGER,
validity UsagePeriod
} OPTIONAL
}

RoutingCombo ::= SEQUENCE {
-- contains the period when the payload should
-- be processed.
-- Router might refuse too long queue retention
-- Recommended support for retention >=1h
minProcessTime INTEGER
(0..maxDurationOfProcessing),
maxProcessTime INTEGER
(0..maxDurationOfProcessing),
-- The message key to encrypt the message
peerKey [401] SEQUENCE
(SIZE (1..maxNumOfReplays))
OF SymmetricKey OPTIONAL,
-- contains the next recipient
recipient [402] BlendingSpec,
-- PrefixBlock encrypted with message key
mPrefix [403] SEQUENCE
(SIZE (1..maxNumOfReplays))
OF OCTET STRING OPTIONAL,
-- PrefixBlock encrypted with sender key
cPrefix [404] OCTET STRING OPTIONAL,
-- HeaderBlock encrypted with sender key
header [405] OCTET STRING OPTIONAL,
-- RoutingBlock encrypted with sender key
routing [406] OCTET STRING OPTIONAL,
-- contains information for building messages
-- (when used as MURB)
-- ID 0 denotes original/local message
-- ID 1-maxPayloadBlks denotes target message
-- ID 32767 denotes a solicited reply block
-- 32768-maxWorkspaceld shared workspace for all
-- blocks of this identity)
assembly [407] SEQUENCE
(SIZE (0..maxAssemblylnstr))
OF PayloadOperation,
-- optional for storage of the arrival time
validity [408] UsagePeriod OPTIONAL

Gwerder Expires 8 October 2022 Page 37

Internet-Draft MessageVortex Protocol April 2022

END

Gwerder Expires 8 October 2022 Page 38

Internet-Draft MessageVortex Protocol April 2022

A.2. The MessageVortex Ciphers Structures

Gwerder Expires 8 October 2022 Page 39

Internet-Draft MessageVortex Protocol April 2022

MessageVortex-Ciphers DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS SymmetricKey, AsymmetricKey, MacAlgorithmSpec,
MacAlgorithm, CipherSpec, PRNGType;

CipherSpec ::= SEQUENCE {
asymmetric [16001] AsymAlgSpec OPTIONAL,
symmetric [16002] SymAIlgSpec OPTIONAL,
mac [16003] MacAlgorithmSpec OPTIONAL,
cipherUsage [16004] CipherUsage

CipherUsage ::= ENUMERATED {
sign (200),
encrypt (210)

SymAlgSpec ::= SEQUENCE {
algorithm [16101]SymmetricAlgorithm,
-- if ommited: pkcs7
padding [16102]CipherPadding OPTIONAL,
-- if ommited: cbc
mode [16103]CipherMode OPTIONAL,
parameter [16104]AlgParameters OPTIONAL
}

AsymAlgSpec ::= SEQUENCE {

algorithm AsymmetricAlgorithm,

-- if ommited: pkcsl

padding [16102]CipherPadding OPTIONAL,
parameter AlgParameters OPTIONAL

¥

SymmetricKey ::= SEQUENCE {
keyType SymmetricAlgorithm,
parameter AlgParameters,
key OCTET STRING (SIZE(16..512))
}

AsymmetricKey ::= SEQUENCE {
keyType AsymmetricAlgorithm,
-- private key encoded as PKCS#8/PrivateKeylnfo
publickey [2] OCTET STRING,
-- private key encoded as
-- X.509/SubjectPublicKeylnfo
privateKey [3] OCTET STRING OPTIONAL

SymmetricAlgorithm ::= ENUMERATED {
aesl28 (1000), --required
aesl92 (1001), -- optional support
aes256 (1002), --required
camellial28 (1100), -- required
camellial92 (1101), -- optional support
camellia256 (1102), -- required
twofish128 (1200), -- optional support
twofish192 (1201), -- optional support

Gwerder Expires 8 October 2022 Page 40

Internet-Draft MessageVortex Protocol April 2022

twofish256 (1202) -- optional support

}
AsymmetricAlgorithm ::= ENUMERATED {
rsa (2000),
dsa (2100),
ec (2200),
ntru (2300)
}

ECCurveType ::= ENUMERATED{
secp384rl (2500),
sect409k1l (2501),
secp521rl (2502)

}
AlgParameters ::= SEQUENCE {
keySize [9000] INTEGER (0..65535) OPTIONAL,
curveType [9001] ECCurveType OPTIONAL,
iv [9002] OCTET STRING OPTIONAL,
nonce [9003] OCTET STRING OPTIONAL,
mode [9004] CipherMode OPTIONAL,
padding [9005] CipherPadding OPTIONAL,
[9010] INTEGER OPTIONAL,

=)

p [9011] INTEGER OPTIONAL,
q [9012] INTEGER OPTIONAL,
k [9013] INTEGER OPTIONAL,
t [9014] INTEGER OPTIONAL

}

CipherMode ::= ENUMERATED {
cbc (10000), -- required
ctr (10001), -- required
ccm (10002), -- optional support
gcm (10003), -- optional support
ocb (10004), -- optional support
ofb (10005), -- optional support
xts (10006), -- optional support
none (10100) -- required

}

CipherPadding ::= ENUMERATED {
none (10200), -- required
pkcsl (10201), -- required

rsaesOaep (10202), -- optional support
oaepSha256Mgfl (10203), -- optional support
pkcs7 (10301), -- required
ap (10221) -- required

}

MacAlgorithm ::= ENUMERATED {
sha3-256 (3000), -- required
sha3-384 (3001), -- optional support
sha3-512 (3002), -- required
ripemd160 (3100), -- optional support
ripemd256 (3101), -- required
ripemd320 (3102) -- optional support

}

MacAlgorithmSpec ::= SEQUENCE {

Gwerder Expires 8 October 2022 Page 41

Internet-Draft MessageVortex Protocol April 2022

algorithm MacAlgorithm,
parameter AlgParameters

}

PRNGAIlgorithmSpec ::= SEQUENCE {
type PRNGType,
seed OCTET STRING

}

PRNGType ::= ENUMERATED {
mrg32k3a (10300), -- required
blumMicali (10301) -- required

}
END

Gwerder Expires 8 October 2022 Page 42

Internet-Draft MessageVortex Protocol April 2022

A.3. The MessageVortex Request Structures

Gwerder Expires 8 October 2022 Page 43

Internet-Draft MessageVortex Protocol April 2022

MessageVortex-Requests DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS HeaderRequest;
IMPORTS RequirementBlock
FROM MessageVortex-Requirements
UsagePeriod, NodeSpec
FROM MessageVortex-Helpers;

HeaderRequest ::= CHOICE {
identity [0] HeaderRequestldentity,
capabilities [1] HeaderRequestCapability,
messageQuota [2] HeaderRequestincreaseMessageQuota,
transferQuota [3] HeaderRequestincreaseTransferQuota,
quotaQuery [4] HeaderRequestQuota,
nodeQuery [5] HeaderRequestNodes,
replace [6] HeaderRequestReplaceldentity

}

HeaderRequestldentity ::= SEQUENCE {
period UsagePeriod

HeaderRequestReplaceldentity ::= SEQUENCE {

replace SEQUENCE {

old NodeSpec,

new NodeSpec OPTIONAL
+

identitySignature OCTET STRING

HeaderRequestQuota ::= SEQUENCE {
}

HeaderRequestNodes ::= SEQUENCE {
numberOfNodes INTEGER (0..255)
}

HeaderRequestincreaseMessageQuota ::= SEQUENCE {
messages INTEGER (0..4294967295)

}

HeaderRequestincreaseTransferQuota ::= SEQUENCE {
size INTEGER (0..4294967295)

}
HeaderRequestCapability ::= SEQUENCE {
period UsagePeriod

HeaderRequestUpgrade ::= SEQUENCE {
version OCTET STRING,
identifier OCTET STRING

}

END

Gwerder Expires 8 October 2022 Page 44

Internet-Draft MessageVortex Protocol April 2022

A.4. The MessageVortex Replies Structures

Gwerder Expires 8 October 2022 Page 45

Internet-Draft MessageVortex Protocol April 2022

MessageVortex-Replies DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS SpecialBlock;
IMPORTS BlendingSpec, NodeSpec
FROM MessageVortex-Helpers
RequirementBlock
FROM MessageVortex-Requirements
CipherSpec, PRNGType, MacAlgorithm
FROM MessageVortex-Ciphers
maxGFSize
FROM MessageVortex-Operations
maxNumberOfReplays
FROM MessageVortex-Schema;

SpecialBlock ::= CHOICE {
capabilities [1] ReplyCapability,
requirement [2] SEQUENCE (SIZE (1..127))
OF RequirementBlock,

quota [4] ReplyCurrentQuota,
nodes [5] ReplyNodes,
status [99] StatusBlock
}
StatusBlock ::= SEQUENCE {
code StatusCode
}

StatusCode ::= ENUMERATED {

-- System messages

ok (2000),
quotaStatus (2101),
puzzleRequired (2201),

-- protocol usage failures
transferQuotaExceeded (3001),
messageQuotaExceeded (3002),
requestedQuotaOutOfBand (3003),

identityUnknown (3101),
messageChunkMissing (3201),
messagelifeExpired (3202),
puzzleUnknown (3301),

-- capability errors
macAlgorithmUnknown (3801),
symmetricAlgorithmUnknown (3802),
asymmetricAlgorithmUnknown (3803),
prngAlgorithmUnknown (3804),
missingParameters (3820),
badParameters (3821),

-- Mayor host specific errors
hostError (5001)
}

ReplyNodes ::= SEQUENCE {
node SEQUENCE (SIZE (1..5))

Gwerder Expires 8 October 2022 Page 46

Internet-Draft MessageVortex Protocol April 2022

OF NodeSpec
}

ReplyCapability ::= SEQUENCE {
-- supported ciphers
cipher SEQUENCE (SIZE (2..256))
OF CipherSpec,
-- supported mac algorithms
mac SEQUENCE (SIZE (2..256))
OF MacAlgorithm,
-- supported PRNGs
prng SEQUENCE (SIZE (2..256))
OF PRNGType,
-- maximum number of bytes to be transferred
-- (outgoing bytes in vortex message without blending)
maxTransferQuota INTEGER (0..4294967295),
-- maximum number of messages to process for this identity
maxMessageQuota INTEGER (0..4294967295),
-- maximum simultaneously tracked header serials
maxHeaderSerials INTEGER (0..4294967295),
-- maximum simultaneously valid build operations in workspace
maxBuildOps INTEGER (0..4294967295),
-- maximum payload size
maxPayloadSize INTEGER (0..4294967295),
-- maximum active payloads (without intermediate products)
maxActivePayloads INTEGER (0..4294967295),
-- maximum header lifespan in seconds
maxHeaderLive INTEGER (0..4294967295),
-- maximum number of replays accepted,
maxReplay INTEGER (0..maxNumberOfReplays),
-- Supported inbound blending
supportedBlendingln SEQUENCE OF BlendingSpec,
-- Supported outbound blending
supportedBlendingOut SEQUENCE OF BlendingSpec,
-- supported galoise fields
supportedGFSize SEQUENCE OF INTEGER (1..maxGF)
}

ReplyCurrentQuota ::= SEQUENCE {
messages INTEGER (0..4294967295),
size INTEGER (0..4294967295)

}

ReplyUpgrade ::= SEQUENCE {
-- The offered version
version [0] OCTET STRING,
-- The offered identitfier
identifier [1] OCTET STRING,
-- The archive or blob containing the software
blob [2] OCTET STRING OPTIONAL

END

Gwerder Expires 8 October 2022 Page 47

Internet-Draft MessageVortex Protocol

A.5. The MessageVortex Requirements Structures

MessageVortex-Requirements DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS RequirementBlock;
IMPORTS MacAlgorithmSpec
FROM MessageVortex-Ciphers
UsagePeriod, UsagePeriod
FROM MessageVortex-Helpers;

RequirementBlock ::= CHOICE {
puzzle [1] RequirementPuzzleRequired,
payment [2] RequirementPaymentRequired

RequirementPuzzleRequired ::= SEQUENCE {
-- bit sequence at beginning of hash from
-- the encrypted identity block
challenge BIT STRING,

mac MacAlgorithmSpec,

valid UsagePeriod,

identifier INTEGER (0..4294967295)
}

RequirementPaymentRequired ::= SEQUENCE {
account OCTET STRING,
ammount REAL,
currency Currency

¥

Currency ::= ENUMERATED {
btc (8001),
eth (8002),
zec (8003)

}

END
Gwerder Expires 8 October 2022

April 2022

Page 48

Internet-Draft MessageVortex Protocol April 2022

A.6. The MessageVortex Helpers Structures

Gwerder Expires 8 October 2022 Page 49

Internet-Draft MessageVortex Protocol April 2022

MessageVortex-Helpers DEFINITIONS EXPLICIT TAGS ::=
BEGIN
EXPORTS UsagePeriod, BlendingSpec, NodeSpec;
IMPORTS AsymmetricKey, SymmetricKey
FROM MessageVortex-Ciphers;

-- the maximum number of embeddable parameters
maxNumberOfParameter INTEGER ::= 127

UsagePeriod ::= CHOICE {
absolute [2] AbsoluteUsagePeriod,
relative [3] RelativeUsagePeriod

}

AbsoluteUsagePeriod ::= SEQUENCE {
notBefore [0] GeneralizedTime OPTIONAL,
notAfter [1] GeneralizedTime OPTIONAL
}

RelativeUsagePeriod ::= SEQUENCE {
notBefore [0] INTEGER OPTIONAL,
notAfter [1] INTEGER OPTIONAL

}

-- contains a node spec of a routing point
-- At the moment either smtp:<email> or xmpp:<jabber>
BlendingSpec ::= SEQUENCE {
target [1] NodeSpec,
blendingType [2] IA5String,
parameter [3] SEQUENCE
(SIZE (0..maxNumberOfParameter))
OF BlendingParameter

}

BlendingParameter ::= CHOICE {
offset [1] INTEGER,
symmetricKkey [2] SymmetricKey,
asymmetrickey [3] AsymmetricKey,
passphrase [4] OCTET STRING

NodeSpec ::= SEQUENCE {
transportProtocol [1] Protocol,
recipientAddress [2] IA5String,
recipientkey [3] AsymmetricKey OPTIONAL

Protocol ::= ENUMERATED {
smtp (100),

xmmp (110)

}

END

Gwerder Expires 8 October 2022 Page 50

Internet-Draft MessageVortex Protocol April 2022

A.7. The MessageVortex Additional Structures

Gwerder Expires 8 October 2022 Page 51

Internet-Draft MessageVortex Protocol April 2022

-- States reflected:

-- Tuple()=Val()[vallidity; allowed operations]

-- {Store}

-- - Tuple(identity)=Val(messageQuota,transferQuota,
-- sequence of Routingblocks for Error Message

-- Routing) [validity; Requested at creation; may

-- be extended upon request] {identityStore}

-- - Tuple(ldentity,Serial)=maxReplays ['valid' from

-- ldentity Block; from First Identity Block; may

-- only be reduced] {ldentityReplayStore}

MessageVortex-NonProtocolBlocks DEFINITIONS
EXPLICIT TAGS ::=
BEGIN
IMPORTS PrefixBlock, InnerMessageBlock,
RoutingBlock,
maxWorkspacelD
FROM MessageVortex-Schema
UsagePeriod, NodeSpec, BlendingSpec
FROM MessageVortex-Helpers
AsymmetricKey
FROM MessageVortex-Ciphers
RequirementBlock
FROM MessageVortex-Requirements;

-- maximum size of transfer quota in bytes of an

-- identity

maxTransferQuota INTEGER ::= 4294967295

-- maximum # of messages quota in messages of an
-- identity

maxMessageQuota INTEGER ::= 4294967295

-- do not use these blocks for protocol encoding
-- (internal only)
VortexMessage ::= SEQUENCE {

prefix CHOICE {

plain [10011] PrefixBlock,
-- contains prefix encrypted with receivers
-- public key

encrypted [10012] OCTET STRING

innerMessage CHOICE {
plain [10021] InnerMessageBlock,
-- contains inner message encrypted with
-- Symmetric key from prefix
encrypted [10022] OCTET STRING

}
}
MemoryPayloadChunk ::= SEQUENCE {
id INTEGER (0..maxWorkspacelD),

payload [100] OCTET STRING,
validity UsagePeriod
}

IdentityStore ::= SEQUENCE {
identities SEQUENCE (SIZE (0..4294967295))

Gwerder Expires 8 October 2022 Page 52

Internet-Draft MessageVortex Protocol

OF IdentityStoreBlock
}

IdentityStoreBlock ::= SEQUENCE {
valid UsagePeriod,
messageQuota INTEGER (0..maxMessageQuota),
transferQuota INTEGER (0..maxTransferQuota),
-- if omitted this is a node identity
identity [1001] AsymmetricKey OPTIONAL,
-- if ommited own identity key
nodeAddress [1002] NodeSpec OPTIONAL,
-- Contains the identity of the owning node;
-- May be ommited if local node

nodeKey [1003] SEQUENCE OF AsymmetricKey
OPTIONAL,
routingBlocks [1004] SEQUENCE OF RoutingBlock
OPTIONAL,

replayStore [1005] IdentityReplayStore,
requirement [1006] RequirementBlock OPTIONAL
}

IdentityReplayStore ::= SEQUENCE {
replays SEQUENCE (SIZE (0..4294967295))
OF IdentityReplayBlock

}

IdentityReplayBlock ::= SEQUENCE {
identity AsymmetricKey,
valid UsagePeriod,

replaysRemaining INTEGER (0..4294967295)

END

Appendix B. Changelog

April 2022

blending. Change in spec for XMPP blending (from XEP-234 to

chunked plain embedding. Added pseudo-code for incoming
message processing. Improved wording of hashes in ASN.1.

Version Date Changes

#

0 11-2018 Initial version

1 02-2019 Removed term block and added more precise spec about
XEP-231). Restructured ASN.1.

2 03-2019 Language and consistency improvements. Added example for

3 09-2019 Removed LaTeX notation in padding.

4 03-2020 Added spec for Software update using MV. Minor language
improvements.

Gwerder Expires 8 October 2022

Page 53

Internet-Draft MessageVortex Protocol April 2022

Version Date Changes
#
5 09-2020 Reinserted lost ASN.1 specs (unintentinally lost in last two

versions). Added changelog. Modified padding to improve
credibility of bad values.

6 02-2021 Removed some outdated references and updated draft according
to the final research document. Refining of language.

7 04-2021 Lectorate and improved rendering.

9 04-2022 Rewrite of security considerations section.

Table 1: changes in versions

Author's Address

Martin Gwerder

University of Applied Sciences and Arts Northwestern
Switzerland

Bahnhofstrasse 5

CH-5210 Windisch

Switzerland

Phone: +41 56 202 76 81

Email: rfc@messagevortex.net

Gwerder Expires 8 October 2022 Page 54

tel:+41%2056%20202%2076%2081
mailto:rfc@messagevortex.net

	MessageVortex Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Protocol Specification
	1.3. Number Specification

	2. Entities Overview
	2.1. Node
	2.1.1. Blocks
	2.1.2. NodeSpec
	2.1.2.1. NodeSpec for SMTP nodes
	2.1.2.2. NodeSpec for XMPP nodes

	2.2. Peer Partners
	2.3. Encryption Keys
	2.3.1. Identity Keys
	2.3.2. Peer Key
	2.3.3. Sender Key

	2.4. Vortex Message
	2.5. Message
	2.6. Key and MAC specifications and usage
	2.6.1. Asymmetric Keys
	2.6.2. Symmetric Keys

	2.7. Transport Address
	2.8. Identity
	2.8.1. Peer Identity
	2.8.2. Ephemeral Identity
	2.8.3. Official Identity

	2.9. Workspace
	2.10. Multi-use Reply Blocks
	2.11. Protocol Version

	3. Layer Overview
	3.1. Transport Layer
	3.2. Blending Layer
	3.3. Routing Layer
	3.4. Accounting Layer

	4. Vortex Message
	4.1. Overview
	4.2. Message Prefix Block (MPREFIX)
	4.3. Inner Message Block
	4.3.1. Control Prefix Block
	4.3.2. Control Blocks
	4.3.2.1. Header Block
	4.3.2.2. Routing Block

	4.3.3. Payload Block

	5. General notes
	5.1. Supported Symmetric Ciphers
	5.2. Supported Asymmetric Ciphers
	5.3. Supported MACs
	5.4. Supported Paddings
	5.5. Supported Modes

	6. Blending
	6.1. Blending in Attachments
	6.1.1. PLAIN embedding into attachments
	6.1.2. F5 embedding into attachments

	6.2. Blending into an SMTP layer
	6.3. Blending into an XMPP layer

	7. Routing
	7.1. Vortex Message Processing
	7.1.1. Processing of incoming Vortex Messages
	7.1.2. Processing of Routing Blocks in the Workspace
	7.1.3. Processing of Outgoing Vortex Messages

	7.2. Header Requests
	7.2.1. Request New Ephemeral Identity
	7.2.2. Request Message Quota
	7.2.3. Request Increase of Message Quota
	7.2.4. Request Transfer Quota
	7.2.5. Query Quota
	7.2.6. Request Capabilities
	7.2.7. Request Nodes
	7.2.8. Request Identity Replace
	7.2.9. Request Upgrade

	7.3. Special Blocks
	7.3.1. Error Block
	7.3.2. Requirement Block
	7.3.2.1. Puzzle Requirement
	7.3.2.2. Payment Requirement
	7.3.2.3. Upgrade

	7.4. Routing Operations
	7.4.1. Mapping Operation
	7.4.2. Split and Merge Operations
	7.4.3. Encrypt and Decrypt Operations
	7.4.4. Add and Remove Redundancy Operations
	7.4.4.1. Padding Operation
	7.4.4.2. Apply Matrix
	7.4.4.3. Encrypt Target Block

	7.5. Processing of Vortex Messages

	8. Accounting
	8.1. Accounting Operations
	8.1.1. Time-Based Garbage Collection
	8.1.2. Time-Based Routing Initiation
	8.1.3. Routing Based Quota Updates
	8.1.4. Routing Based Authorization
	8.1.5. Ephemeral Identity Creation

	9. IANA Considerations
	10. Security Considerations
	10.1. CIA Triad
	10.2. Anonymity and Detectability
	10.2.1. Blending Layer Considerations
	10.2.2. Routing and Accounting Layer Considerations

	10.3. Active Adversaries

	11. References
	11.1. Normative References
	11.2. Informative References

	Appendix A. The ASN.1 schema for Vortex messages
	A.1. The Main MessageVortex Blocks
	A.2. The MessageVortex Ciphers Structures
	A.3. The MessageVortex Request Structures
	A.4. The MessageVortex Replies Structures
	A.5. The MessageVortex Requirements Structures
	A.6. The MessageVortex Helpers Structures
	A.7. The MessageVortex Additional Structures

	Appendix B. Changelog
	Author's Address

