
MessageVortex
Transport Independent, Unobservable, and Unlinkable Messaging

Inauguraldissertation
zur

Erlangung der Würde eines Doktors der Philosophie
vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät
der Universität Basel

von
Martin Gwerder

2025

Original document available on the edoc sever of the university of Basel edoc.unibas.ch.

This work is published under "Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Switzerland"
(CC BY-NC-ND 3.0 CH) licensed. The full license can be found at

http://creativecommons.org/licenses/by-nc-nd/3.0/ch/.

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
Auf Antrag von

Prof. Dr. Christian F. Tschudin und Prof. Dr. Ulrich Ultes-Nitsche

Basel, der 25.5.2021 durch die Fakultätsversammlung

Prof. Dr. Marcel Mayor

Abstract

In this thesis, we introduce an unobservable message anonymization protocol named Mes-
sageVortex. It is based on the zero-trust principle, has a distributed peer-to-peer (P2P)
architecture, and avoids central aspects such as fixed infrastructures within a global network.
It scores over existing work by blending its traffic into suitable standard transport protocols
like SMTP, making it next to impossible to block it without significantly affecting regular
users of the transport medium. No additional protocol-specific infrastructure is required in
public networks and allows a sender to control all aspects of a message, such as the degree
of anonymity, timing, and redundancy of the message transport, without disclosing any of
these details to routing or transporting nodes. We have made our prototype implementation
publicly available and added an RFC-style document that contains all necessary information
to build a MessageVortex node, see https://messagevortex.net/.

Acknowledgments

I want to thank my wife, Cornelia, and my lovely three children, Saphira, Florian and Aurelius,
for their patience and support. Without them, I could never have completed this work.

I want to thank Prof. Dr. C. Tschudin and the University of Basel for the opportunity of
writing this work and for the challenges they posed me, allowing me to grow.

Dr. Andreas Hueni was very supportive by challenging my work with his outside-the-box
thinking.

Prof. Dr. Carlos Nicolas of the University of Northwestern Switzerland for being such a
valuable sparring partner allowing me to test my ideas.

I want to acknowledge all the individuals who have coded for the LATEX project for free. Due
to their efforts, we can generate professionally typeset PDFs (and far more) for free.

Contents

I Introduction 1

1 Preface 3
1.1 Our Approach . 5

2 Our Contribution 6

3 Scope and Aproach 7

4 Notation 8
4.1 Cryptography . 8
4.2 Code and Commands . 9
4.3 Hyperlinking . 9

II Relevant Concepts and Technologies 11

5 Anonymity and Trust-Related Research 13
5.1 Definition of Anonymity . 13
5.2 k-Anonymity . 13
5.3 ℓ-Diversity . 14
5.4 t-Closeness . 14
5.5 Zero Knowledge Proofs . 14
5.6 Censorship . 15

5.6.1 Censorship Resistance . 15
5.6.2 Parrot Circumvention . 16

5.7 Single Use Reply Blocks and Multi-Use Reply Blocks 16
5.8 Zero Trust . 16

6 Related Cryptographic Theory and Algorithms 17
6.1 Deniable Encryption . 19
6.2 Key Sizes . 19
6.3 Cipher Mode . 20
6.4 Summary of Cipher Modes . 22
6.5 Padding . 23

6.5.1 RSAES-PKCS1-v1_5 and RSAES-OAEP 23
6.5.2 PKCS7 . 23
6.5.3 OAEP with SHA and MGF1 padding 23

vi CONTENTS

7 Censorship Circumvention 24
7.1 Covert Channel and Channel Exploitations 24
7.2 Steganography . 24
7.3 Timing Channels . 25
7.4 Technical Forms of Censorship . 25

7.4.1 Making Systems Unavailable by Censoring Lookups 25
7.4.2 Making Systems Unavailable by Disrupting System Traffic . . 26
7.4.3 Making Systems Unavailable by Interfering with System Traffic 26

7.5 Spread Spectrum in Networking Protocols 27

III Anonymous Communication Systems 29

8 Well Known Standard Protocols 31
8.2 S/MIME (1996) . 34
8.3 Pretty Good Privacy (1996) . 35
8.4 XMPP . 35

9 Information in Anonymizing Protocols 35
9.1 Mixing . 36
9.2 Anonymous Remailers . 37
9.3 Onion Routing . 37
9.4 Garlic Routing . 38
9.5 Crowds . 38
9.6 Mimic Routes . 38
9.7 Distributed Hash Tables . 39
9.8 Dining Cryptographer Networks . 39
9.9 Private Information Retrieval . 39

10 Academic Protocols and Implementations 39
10.1 Characteristics of Known Anonymity Implementations 40
10.2 Resenders, Onion Routers, and MixNet-Based Systems 41

10.2.1 Pseudonymous Remailers (1981) 41
10.2.2 Cypherpunk Remailers (approx. 1993) 41
10.2.3 Babel (1996) . 41
10.2.4 Mixmaster-Remailers (1996) 42
10.2.5 Crowds (1997) . 42
10.2.6 Tor (2000) . 42
10.2.7 I2P (2001) . 44
10.2.8 Mixminion-Remailers (2002) 44
10.2.9 𝒫5 (2002) . 45
10.2.10 AN.ON (2003) . 45
10.2.11 AP3 (2004) . 45
10.2.12 Cashmere (2005) . 45
10.2.13 SOR (2012) . 45
10.2.14 PGA (2013) . 46
10.2.15 Vuvuzela (2015) . 46
10.2.16 Riffle (2016) . 47
10.2.17 MCMix (2017) . 47

CONTENTS vii

10.2.18 SCION (2017) . 47
10.2.19 Karaoke (2018) . 47

10.3 PIR-Based Systems . 48
10.3.1 Riposte (2015) . 48
10.3.2 Pung (2016) . 48

10.4 Distributed Hash Tables . 49
10.4.1 Tarzan (2002) . 49
10.4.2 MorphMix (2002) . 49
10.4.3 Salsa (2008) . 49

10.5 Dining Cryptographer-Based Networks 49
10.5.1 Herbivore (2003) . 49
10.5.2 Dissent (2010) . 49
10.5.3 Verdict (2013) . 50

10.6 Broadcast and Multicast Networks 50
10.6.1 Hordes (2002) . 50
10.6.2 Atom (2016) . 50

10.7 Distributed Storage Systems . 51
10.7.1 Freenet (2000) . 51
10.7.2 Gnutella (2000) . 51
10.7.3 Gnutella2 (2002) . 51

IV TheMessageVortex System 53

11 Requirements for an Anonymizing Protocol 55
11.1 Threat Model . 55

11.1.1 Observing Adversaries . 57
11.1.2 Censoring Adversaries . 57
11.1.3 Realism of the Assumed Adversaries 57

11.2 Required Properties for Our Unobservable Protocol 58
11.2.1 Required System Properties 58
11.2.2 Message Requirements . 60
11.2.3 Operational Requirements . 61

12 Rationale 63
12.1 System Design and Infrastructure . 63
12.2 Message and Routing . 64
12.3 Summarizing Chosen Approaches for MessageVortex 66

13 Protocol 67
13.1 Protocol Terminology . 68
13.2 Key Components . 69

13.2.1 Nodes and Their Identities . 69
13.2.2 Workspaces and Ephemeral Identities 69
13.2.3 Protocol Layers . 71
13.2.4 Transport Layer . 72

13.2.4.1 Blending Layer . 72
Processing a message received from the transport layer 73
Processing a message received from the routing layer . . 73

viii CONTENTS

Credible content creation for the transport layer 74
13.2.4.2 Routing Layer . 74
13.2.4.3 Accounting Layer 76

13.2.5 VortexMessages . 76
13.2.5.1 Message Structure Related to Censorship Circumven-

tion . 78
13.2.5.2 Message Structure Related to Information Leaking 79

13.2.6 Routing Operations . 79
13.2.6.1 The addRedundancy and removeRedundancy Opera-

tions . 79
13.2.6.2 The encrypt and decrypt Operations 82
13.2.6.3 The mergePayload and splitPayload operation . . 83

13.3 Summary . 84

V Implementation 85

14 Algorithms, Encodings, and Protocols Selection 87
14.1 Encoding Scheme . 88
14.2 Cipher Selection . 88
14.3 Mode Selections . 90
14.4 Padding Selection . 92

14.4.1 RSAES-PKCS1-v1_5 and RSAES-OAEP 92
14.4.2 PKCS7 . 93
14.4.3 OAEP with SHA and MGF1 Padding 93
14.4.4 Honorable Mention: A Padding for redundancy Operations . 93
14.4.5 Pseudo Random Number Generator Selection 93

14.5 Transport Layer Protocol Selection . 94
14.5.1 Applied Criteria . 94
14.5.2 Analyzed Protocols . 95
14.5.3 Analysis . 96
14.5.4 Results . 100

15 Transport Layer Implementation 100
15.1 Implementation of a Dummy Transport Layer 100
15.2 Implementation of an Email Transport Layer 100
15.3 Implementation of an XMPP Transport Layer 102
15.4 Distributed Configuration and Runtime Store of Processing Content 103

16 Blending Layer Implementation 104
16.1 Embedding Spec . 104

16.1.1 Extraction of the Blended Message 104
16.1.2 Plain Embedding . 104
16.1.3 Implementation of F5 Blending 106

16.2 Message Processing by the Blending Layer 106
16.3 Decoy Content Generation . 107

17 Routing Layer Implementation 107
17.1 ASN.1 DER-Encoding Scheme for VortexMessages 107

CONTENTS ix

17.2 The Processing of Messages . 108
17.2.1 Workspace Layout . 108
17.2.2 Processing of Incoming Messages 108
17.2.3 Processing of Outgoing Messages 109
17.2.4 Implementation of Operations 110

17.3 Handling Requests . 111
17.3.1 Requesting a new Ephemeral Identity 112
17.3.2 Replacing an Existing Node Specification or Proving a Sender Iden-

tity . 113
17.3.3 Replacing an Existing Reply Block 114

18 Accounting Layer Implementation 114

19 Usability-Related Implementation Details 115
19.1 Addressing and Address Representations 115
19.2 Linking to Common User Agents . 116

20 Efficiency-Related Implementation Details 117
20.1 Node Storage Management . 117

20.1.1 Storage Management of Ephemeral Identities, Operations, and
Payload Blocks . 118

20.1.2 Life Cycle of Requests . 119
20.1.3 Minimizing the Memory Footprint of Message Processing . . 119

VI Operational concerns 123

21 General Operational Concerns 125
21.1 Hardware . 125
21.2 Addressing VortexNodes . 125
21.3 Client . 126

21.3.1 MessageVortex Accounts . 126
21.3.2 VortexNode Types . 127

21.3.2.1 Public VortexNode 127
21.3.2.2 Stealth VortexNode 127
21.3.2.3 Hidden VortexNode 127

22 Routing 128
22.1 Strategies for Composing Routing Blocks 128
22.2 Strategies for Minimizing Impact and Maximizing Effect when Routing

Foreign Messages . 130
22.2.1 Operational Aspects of MURBs 131

22.3 Routing Algorithms Suitable for Achieving Anonymity 131
22.3.1 The Routing Block . 132
22.3.2 A Simple Routing Strategy . 132

22.4 Routing Diagnosis and Reputation Building 138
22.5 Redundancy and Distribution Strategy 139

23 Protocol Bootstrapping 139
23.1 Key Distribution for Endpoints . 139

x CONTENTS

23.2 Key Acquisition for Routing Nodes 140

24 Real-World Problems when Using MessageVortex 140
24.1 Size Restrictions of the Transport Layer 140
24.2 Redundancy of the VortexNode . 141

VII Analysis of MessageVortex 143

25 Identification of Attacks and Mitigations 145
25.1 Static Attacks . 145
25.2 Dynamic Attacks . 146

26 Static Analysis 147
26.1 Analysis of the Blending and Transport Layer 147

26.1.1 Identifying a VortexMessage Endpoint 147
26.1.2 Analysis of the F5-Embedding Method 148

26.2 Analysis of Plain Embedding . 148
26.3 Analysis of Routing Layer . 151

26.3.1 Analysis of Core Operations 151
26.3.1.1 Splitting and Merging 151
26.3.1.2 Encryption and Decryption Operations 152
26.3.1.3 Add and Remove Redundancy Operations 152

26.4 Knowledge of a Node Sending the First Message 152
26.5 Intermediate Node Routing Layer . 152
26.6 Security of Protocol Blocks . 153

27 Dynamic Attack Analysis 154
27.1 Well-Known Attacks . 154

27.1.1 Broken Encryption Algorithms 154
27.1.2 Attacks Targeting Anonymity 155

27.1.2.1 Probing Attacks 156
27.1.2.2 Hotspot Attacks 156
27.1.2.3 Message Tagging and Tracing 156
27.1.2.4 Side-Channel Attacks 157
27.1.2.5 Sizing Attacks . 157
27.1.2.6 Bugging Attacks 157
27.1.2.7 Analysis by Building Interaction Graphs 158

27.1.3 Denial of Service Attacks . 161
27.1.3.1 Censorship . 161
27.1.3.2 Denial of Service 161
27.1.3.3 Credibility Attack 161
27.1.3.4 Denial of Service by Exhausting Quotas or Limits 162

27.1.4 Attacking Sending and Receiving Identities of the MessageVortex
System . 162
27.1.4.1 Traffic Highlighting 162

27.1.5 Recovery of Previously Carried out Operations 163
27.2 Side Channel Leaking . 163

27.2.1 Software Updates and Related Data Streams 163

CONTENTS xi

27.2.2 Bugging in Transported Messages 163
27.2.3 Exploiting MURBS . 164

27.3 Achieved Anonymity and Shortcomings 164
27.3.1 Measuring Anonymity . 164
27.3.2 Attacking Routing Participants 165
27.3.3 Attacking Anonymity through Traffic Analysis 165
27.3.4 Attacking Anonymity through Timing Analysis 168
27.3.5 Attacking Anonymity through Throughput Analysis 168
27.3.6 Attacking Anonymity through Routing Block Analysis 168
27.3.7 Attacking Anonymity through Header Analysis 168
27.3.8 Attacking Anonymity through Payload Analysis 169
27.3.9 Attacking Anonymity through Bugging 169
27.3.10 Attacking Anonymity through Replay Analysis 169
27.3.11 Diagnosability of Traffic . 169

27.3.11.1 Hijacking of Header and Routing Blocks 169
27.3.11.2 Partial Implicit Routing Diagnosis 169
27.3.11.3 Partial Explicit Routing Diagnosis 170

28 Analysis of the Effectiveness of Attack Schemes 170

29 Degree of Anonymization in Comparison 170
29.1 Comparing MessageVortex to Remailers 170
29.2 Comparing MessageVortex to a DC Network-Based System 171
29.3 Comparing MessageVortex to a Broadcast-Based System 173

30 Recommendations on Using the MessageVortex Protocol 175
30.1 Reuse of Routing Blocks . 175
30.2 Use of Ephemeral Identities . 176
30.3 Recommendations on Operations Applied on Nodes 176
30.4 Reuse of Keys, IVs, or Routing Patterns 176
30.5 Recommendations on Choosing involved Nodes 177
30.6 Message Content . 177

30.6.1 Splitting Message Content . 177
30.7 Routing . 177

30.7.1 Redundancy . 177
30.7.2 Operation Considerations . 178
30.7.3 Anonymity . 178

VIII Discussion and Conclusion 179

31 The Achieved Properties of the Protocol 181
31.1 Measuring up to the Requirements 181
31.2 Achieved Level of Anonymity and Detectability 182

32 Weaknesses of the Protocol 184

33 Missing Research 184
33.1 Lack of Base Data . 184
33.2 Lack of Implementations . 185

xii CONTENTS

33.3 Further and Missing Research . 185

34 Potential and Improvements 186
34.1 Improvements in Blending . 186
34.2 Operations Agility . 186
34.3 Simplified and Anonymity-Conformant Bootstrapping 186

35 Closing Words 187

IX Appendix 189

A The RFC draft document A1

B Glossary A56

Short Biography A77

List of Tables

6.1 Comparison of encryption modes in terms of the suitability. 22

10.1 Classification table for anonymization protocols. 40

11.1 Summary table of requirements. 55

14.1 Comparison of protocols in terms of the suitability as transport layer. . 100
15.1 Distribution of top 20 attachment types. 101
15.2 Overview of XEPs related to transporting binary data. 102
16.1 Example interpretation of bytes in offset values. 106
17.1 Workspace layout of IDs. 108
18.1 Requests and the applicable criteria for replies. 115

26.1 Comparison of potential transport layer. 151

List of Figures

1.1 A traceroute to the host www.ietf.org. 6

8.1 Mail agents. 32

13.1 Simplified outline of a workspace in a VortexNode. 70
13.2 The protocol layers. 71
13.3 Simplified representation of a routing block. 75
13.4 Simplified message outline visually and in math. 77
13.5 Detailed representation of a VortexMessage. 78
13.6 Outline of the addRedundancy and removeRedundancy operation. . . 80
13.7 Outline of the encrypt and decrypt operation. 82
13.8 Outline of the splitPayload and mergePayload operation. 83

14.1 Definition of the structures related to ciphers. 89
14.2 Enumeration definition of modes in ASN.1 with support requirements. 90
14.3 Enumeration definition of paddings in ASN.1 with support requirements. 92
17.1 Flow diagram showing processing of outgoing messages. 121
17.2 Flow diagram showing processing of outgoing messages. 122

22.1 Transformation of a graph into a sequence of messages. 133

22.2 A graph containing six paths between node 0 and node 1. 134
22.3 Distribution of getRandomTime(90, 120, 200) in algorithm 3. 136

26.1 Distribution Analysis of Different, Common Graphics Formats. 150
26.2 Distribution analysis of a MessageVortex block. 150
26.3 Entropy of addRedundancy with and without the encryption step. . . . 153
27.1 A randomly generated graph with highlighted paths to the target. . . . 159
27.2 The graph of 27.1 assuming all nodes except node 0 and 1 are evil. . . . 160
27.3 A possible path of a VortexMessage. 167
29.1 A typical Mixminion mix cascade. 172
29.2 A typical DC network communication pattern. 173
29.3 A typical broadcast network communication pattern (full mesh). 174
29.4 A reduced broadcast network communication pattern (single broadcast). 174

List of Requirements

RQ1 Protocol nodes and their traffic should be undistinguishable from accepted nodes and
traffic. 58
RQ2 All nodes of the system should have similar functions, capabilities, and behavior. 58
RQ3 No trust should be imposed on any infrastructure unless it is the senders’ or the
recipients’ infrastructure. 59
RQ4 A message must not be linkable by an adversary to either a sender or a recipient. 59
RQ5 A system must anonymize the sender and recipient at any point of the transport layer
and at any point within the system unless on the senders’ or the recipients’ node. 60
RQ6 The system must be able to account for an entity without being linked to a real identity.
60
RQ7 The message should be untagable (neither by a sender nor by an involved intermediate
node). 60
RQ8 The message should be unbugable (neither by the sender nor by an involved
intermediate node). 61
RQ9 A message or its behavior must not be replayable. 61
RQ10 The system must allow to bootstrap from a zero-knowledge or near-zero-knowledge
point and extend the network on its own. 61
RQ11 The system must be able to use multiple symmetric, asymmetric, and hashing
algorithms to immediately fall back to a secure algorithm for all new messages if required.61
RQ12 The system must be usable without cryptographic know-how and with popular or
common tools. 62
RQ13 From a user’s perspective, the system must act in a predictable manner. Messages
handed over to the system should reach their destination in any case. 62
RQ14 From a user’s perspective, the system must act in a predictable manner. The user is
able to determine the state of a message at any given point in time. 62
RQ15 A user must have access to a working system and its software and updates. 62
RQ16 A recipient of a message should be able to authenticate a sender of a message beyond
a simple authentification. 62

LIST OF FIGURES xv

xvi LIST OF FIGURES

IPart

Introduction

The most effective way to do it is TO
DO IT

Amelia Earhart

2 PART I. INTRODUCTION

3

1 Preface
Almon Brown Strowger was the owner of a funeral parlor in St. Petersburg. He filed a patent
on March 10th, 1891 for an “Automatic Telephone Exchange” [157] which built the basis for
modern automated telephone systems. According to several sources, he was annoyed that
the local telephone operator was married to another undertaker. She diverted potential
customers of Mr. Strowger to her husband instead, which caused Almon B. Strowger to
lose business. In 1922, this telephone dialing system, now called pulse dialing, became the
standard dialing technology for more than 70 years until it was replaced by tone dialing.

This dialing technology was the basis for automatic messaging of voice and text messages
(e.g., telex) and is the foundation for current routed networks. These networks established our
communication-based society and allow us to quickly connect with any person or company
we wish. However, computers do not only allow to route at high speed and throughput. They
also allow the collection and analysis of data. Today, we use these networks as communication
means for all purposes, and most people spend minimal thought on the possible consequences,
should the wrong person get their hands on this communication.

Information data miners may use this collected data to judge our intentions, which are
confidential if we have something to hide. This problem has dramatically increased in the
last years as large companies and countries started to collect all sorts of data and created the
means to process them. It supposedly allows judging people not only on what they are doing
but also on what they already have done in the past and what they might do in the future.
Past and present, numerous events show that actors, some state-sponsored, collected data
on a broad basis within the Internet. Whether this is a problem or not is a disputable fact.
However, undisputed is that such data requires careful handling, and accusations should then
be based on solid facts. While people may classify personalized advertising as a legitimate
use of data, a general classification of citizens is broadly considered unacceptable [17, 119,
10, 65, 91].

To show that this may occur even in democracies, we refer to events such as the “secret
files scandal” (or “Fichenskandal”) in Switzerland. From 1900 to 1990 the Swiss government
collected 900’000 files in a secret archive (covering more than 10% of the natural and juristic
entities within Switzerland at that time). The Swiss Federal Archives have documented this
event in depth [91].

In 2009, whistleblower Edward Snowden leaked a vast amount of documents which suggest
that such attacks on privacy common on a global scale. The documents claim that a data
collection was going to be initiated in 2010. Since these documents are not publicly avail-
able, it is difficult to prove the claims based on these documents. However, a significant
number of journalists from multiple countries screened these documents and claimed that
the information seemed credible. According to these documents (verified by NRC), the
NSA infiltrated more than 50K computers with malware to collect classified or personal
information. They furthermore infiltrated telecom operators (mainly executed by British
GCHQ) such as Belgacom to collect data and targeted high members of governments even
in associated states (such as the mobile phone number of Germany’s chancellor) [17, 119,
10, 2, 65]. A later published shortened list of “selectors” in Germany showed 68 telephone
and fax numbers targeting the German government’s economy, finance, and agricultural
departments. A global survey done by the freedom house [57] claims a decrease in Internet
freedom for the 11th year in a row.

This list of events shows that big players collect and store vast amounts of data for analysis
or possible future use. The list of events also shows that the use of such data was at least

http://www.nrc.nl/nieuws/2013/11/23/nederland-sinds-1946-doelwit-van-nsa

4 CHAPTER 1. PREFACE

partially questionable. This work analyzes the possibility of using state-of-the-art technology
to minimize a person’s information footprint on the Internet.

When looking at e-voting [68] compared to traditional secret voting systems, anonymity
becomes crucial as the observation of voting behavior becomes an immediate threat for each
identifiable voter for an opponent, as they may fear subsequent repression.

We leave a large information footprint in our daily communication. In a regular email, we
disclose everything in a “postcard” to any entity on its way. Even when encrypting a message
perfectly with today’s technology (S/MIME [54] or PGP [45]), it still leaves at least the
originating and the receiving entity disclosed, or we rely on the promises of a third-party
provider that offers a proprietary solution. Even in those cases, we leak information such as
“message subject”, “frequency of exchanged messages”, “size of messages”, or “client being
used”. A suitable anonymity protocol must cover more than the sent message itself. In
addition to the message itself, it includes all metadata and all traffic flows. Furthermore,
a protocol to anonymize messages should not rely on trusting infrastructure other than
infrastructure under the sending or receiving entity’s control. Trust in any third party might
be misleading in terms of security or privacy.

Furthermore, central infrastructure is bound to be of particular interest to anyone gathering
data. Such control by an adversary would allow manipulating the system, the data or the
data flow. Thus, avoiding a central infrastructure is valid for minimizing the information
footprint available to a single entity.

Leaving no information trail when sending information from one person to another is
difficult to achieve. Most messaging systems disclose at least the peer partners when posting
messages. Metadata such as starting and endpoints, frequency, or message size are leaked
in all standard protocols even when encrypting messages.

Allowing an entity to collect data may affect senders and recipients of any information. The
collection of vast amounts of data allows a potent adversary to build a profile of a person.
With the dawn of the Internet, the availability of information has risen to an unknown
extent.

An entity in possession of such profiles may use them for many purposes. These include
service adoption, directed advertising, or the classification of citizens. The examples given
above show that this data’s effects are not limited to the Internet but can also reach us in
the real world.

The main problem with this data is that it may be collected over a considerable amount of
time and evaluated at any time. It could even occur that standard practices at one time
are judged differently at a later time. Governments, companies, or people could then judge
others retrospectively on these types of practices. This questionable type of judgment is
visible in the tax avoidance discussion [6].

People with a “bad”, “unsuitable”, or “non-conformant” information footprint may be subject
to banning, repression, or information access exclusion. People must be able to control their
own data footprint. Not providing those means allows any country or a more prominent
player to effectively ban and control any number of persons within or outside the Internet.

5

1.1 Our Approach

Our approach in this work is to provide a new form of communication for such environments.
Messages should be exchangeable without the knowledge of anyone including any observer
on a governmental or ISP level. This unobservability must not only cover any message but
all associated metadata as well. The infrastructure needed for this means of communication
must be standard, off-the-shelf and unsuspicious. Communication should be secure without
any or minimal trust in the infrastructure routing the messages.

The primary goal is to enable freedom of speech, as defined in Article 19 of the International
Covenant on Civil and Political Rights (ICCPR) [165].

“ everyone shall have the right to hold opinions without interference ”
and

“ Everyone shall have the right to freedom of expression; this right shall include
freedom to seek, receive and impart information and ideas of all kinds, regardless
of frontiers, either orally, in writing or print, in the form of art, or through any
other media of his choice. ”

We imply that not all participants on the Internet share this value. As of March 23rd, 2021,
Countries such as China (signatory), Cuba (signatory), Qatar (signatory), Saudi Arabia,
Singapore, United Arab Emirates, or Myanmar have yet to ratify the ICCPR. Other countries
such as the United States or Russia either put local laws in place superseding the ICCPR or
made reservations rendering parts ineffective. Therefore, we may safely assume that freedom
of speech is not given on the Internet.

If we transfer the right of free speech in the world of networks, then uncensored network
packet flow is the equivalent in the networking world. Network packets may pass through
any point in the world. A sender has no control over it. This lack of control occurs because
every routing device decides on its own for the next hop. This decision may be based on
static rules or influenced by third-party nodes or circumstances (e.g., BGB, RIP, OSPF. . .). It
is furthermore not possible to detect which way a packet has taken. The standard network
diagnostic tool tracert respectively traceroute returns a potential list of hops. This
list is only correct under certain circumstances (e.g., a stable route for multiple packets or
the same routing decisions regardless of other properties than the source and destination
address). Any output of these tools may, therefore, not be taken as a log of routing decisions.
There is no possibility in standard IP routed networks to foresee a route for a packet, nor can
it be measured, recorded, or predicted before, during, or after sending.

As an example of the problems analyzing a packet route, we look at traceroute. Accord-
ing to the man page of traceroute, traceroute uses UDP, TCP, or ICMP packets with
a short TTL and analyzes the IP of the peer sending a TIME_EXCEEDED (message of the
ICMP protocol). This information is then collected and shown as a route. This route may be
completely false. The man page describes some of the possible causes.

We cannot state that data packets we are sending pass only through countries accepting the
ICCPR to the full extent, nor can we craft packages following such a rule.

6 CHAPTER 2. OUR CONTRIBUTION

$traceroute www.ietf.org
traceroute to www.ietf.org.cdn.cloudflare−dnssec.net (104.20.0.85), 64 hops max
1 147.86.8.253 0.418ms 0.593ms 0.421ms
2 10.19.0.253 1.177ms 0.829ms 0.782ms
3 10.19.0.253 0.620ms 0.427ms 0.402ms
4 193.73.125.35 1.121ms 0.828ms 0.905ms
5 193.73.125.81 2.991ms 2.450ms 2.414ms
6 193.73.125.81 2.264ms 1.961ms 1.959ms
7 192.43.192.196 6.472ms 199.543ms 201.152ms
8 130.59.37.105 3.465ms 3.138ms 3.121ms
9 130.59.36.34 3.904ms 3.897ms 4.989ms
10 130.59.38.110 3.625ms 3.333ms 3.379ms
11 130.59.36.93 7.518ms 7.232ms 7.246ms
12 130.59.38.82 7.155ms 17.166ms 7.034ms
13 80.249.211.140 22.749ms 22.415ms 22.467ms
14 104.20.0.85 22.398ms 22.222ms 22.146ms
$

Figure 1.1: A traceroute to the host www.ietf.org.

To enable freedom of speech, we need a means of transport for messages which keep sender
and recipient anonymous to an adversary.

We feel that this work is needed, as much work in the anonymity field is focused on the aspect
of “how to achieve anonymity” and analyzing it against the means of an adversary, which is
simple and technocratically based. In this work, we define an adversary who observes or
disrupts communication, but may also suppress the use of technology. Therefore, the focus
is not only to create a protocol for anonymity but to create a protocol that is undetectable.

2 Our Contribution
This thesis contributes to anonymization with an asynchronous messaging protocol called
MessageVortex.

The protocol employs a new type of programmable forwarders called VortexNodes (nodes)
with a novel way of message mixing, moving away from a strictly chunked and onionized
system to one, where routing operations allow an increase or decrease in size without
differentiating between decoy traffic and message routing. We refer to the instructions
required to process a node as “routing blocks”. These routing blocks have an onionized
structure, only exposing the required information for the current node. Routing blocks may
travel with a message or join the message at any common VortexNode.

Our protocol differentiates from other protocols by the fact that mixing and routing messages
does not rely on knowingly injected decoy traffic and that we are capable of piggybacking
multiple other carrier protocols without modifying the required, already available infrastruc-
ture on the Internet or requiring a dedicated infrastructure. The carrier protocols may even
be switched during routing, making it even more difficult to observe message traffic.

For non-traceable routing, we introduce a novel type of routing operation called “add-
Redundancy”. This operation is a Reed–Solomon-calculation with encryption and a new

type of padding . This operation transposes the received information in a larger or smaller
form than the original message by adding or removing redundancy operations. The applied
padding structures the message so that any possible result of a decryption operation results
in a plausible padding structure. With standard paddings, decoy operations on traffic would
possibly be identifiable as the resulting padding structure may be invalid leaking information.
After applying these operations, the routing node sends this transposed information to
subsequent peers without any knowledge of what parts of the sent messages are relevant
for the successful message delivery. Therefore, applying such operations makes it impossible
for any node to differentiate between decoy traffic and real message traffic. Furthermore,

7

tagging beyond peering nodes is not possible, as building relations between non-neighboring
nodes’ messages is not possible.

An outside observer cannot identify messages, as they do not use a proprietary communica-
tion protocol but hide within other standard Internet protocols. We blend these transport
protocols without modifying the servers used for message transport. This property makes
the protocol very robust as server administrators’ prosecution is not sensible if traffic is
running over their infrastructures.

As the structure of routing blocks does not expose the encryption keys required to build
routing blocks for a peering node, a malicious node may only discover other possible peer
partners when routing traffic without gaining the capability of talking to them. Other prop-
erties, such as routed traffic, message size, message content, communication partners, or
intensity of communication remain hidden. External global observers are unable to differen-
tiate between regular protocol traffic and Vortex traffic. Assuming an observer can identify
the steganographically hidden information, he may apply censorship but remains unable
to trace messages according to external attributes, even assuming that he has additional
information from collaborating nodes within the message path.

This protocol can even withstand a censoring adversary on a regional or super-regional scale,
as our protocol hides in common protocols and remains undetectable. As the creator of a
routing block fully controls anonymity, we achieve either sender or receiver anonymity. The
protocol is built with crypto-agility and thus is able to adapt to the anonymity needs of its
user.

Our protocol was implemented in Java , is publicly available under , and runs on RaspberryPI
Zero W computers as a proof of concept, showing that weak nodes may participate in such
a network. In addition to the scientific aspects of the protocol, we shed light on many
operational aspects relevant for a real-world usage of the protocol and added these findings

to the work.

3 Scope and Aproach
The main topic of this thesis was defined as follows:

• Is it possible to have a messaging protocol used on the Internet, based on “state of
the science” technologies offering a high degree of unlinkability (sender and receiver
anonymity) towards an adversary with a high budget and privileged access to the
Internet infrastructure?

Based on this central question, there are several sub-questions grouped around various
topics:

1. What technologies and methods may be used to provide sender and receiver anonymity
and unlinkability when sending messages against a potential censoring or observing
adversary?

This question covers the principal part of the work. We first collect relevant concepts,
systems and technologies in part II and III. We then elaborate on a list of criteria for
the MessageVortex protocol in chapter 11. In part IV, we then create a list of suitable
technologies and methods and explain our choice in chapter 12. Based on these findings,
we define a protocol combining these technologies and researches into a solution in

https://messagevortex.net/

8 CHAPTER 4. NOTATION

chapter 13. The implementation of this solution is explained in part V and then in
part VII analyzed for suitability based on the criteria specified.

2. How can entities utilizing MessageVortex be attacked, and what measures are available
to circumvent such attacks?

Within this question, we look at various attacks and test the protocol’s resistance based
on the definition of the protocol in part IV. First, we collected well-known attacks in
chapter 25. We then elaborate if those attacks might be successful (and if so under what
circumstances) in chapter 26 and chapter 27.

3. How can design mitigate attacks targeting the anonymity of a sending or receiving
entity within MessageVortex?

Within this question, we define baselines to mitigate attacks by identifying guidelines
for using the protocol in part VI. We analyze the guidelines’ effectiveness and elaborate
on the general achievement level of the protocol by referring to the criteria defined in
SQ1.

4 Notation

4.1 Cryptography

The theory in this document is heavily based on symmetric encryption, asymmetric en-
cryption and hashing. As a uniformed notation we use EKa(M) (where a is an index to
distinguish multiple keys) resulting in MKa as the encrypted message. If reflecting a tuple of
information, it is written in boldface. To express the content of the tuple, angular brackets
L⟨normalAddress, vortexAddress⟩ are used. If we want messages encrypted with multiple
keys, we list the used keys as a comma-separated list in superscript EKb

(︁
EKa (M)

)︁
= MKa,Kb .

For a symmetric encryption of a message M with a key Ka resulting in MKa where a is an
index to distinguish different keys. Decryption uses DKa(MKa) =M.

As notation for asymetric encryption we use EK1
a (M) where K−1

a is the private key and K1
a is

the public key of a key pair K p
a . The asymmetric decryption is noted as DK−1

a (M).

For hashing, we use H(M) if unsalted and HS a if using a salted hash with salt S a. The
generated hash is shown as HM if unsalted and HS a

M if salted.

If we want to express what details are contained in a tuple we use the notation
M⟨t, MURB, serial⟩ respectively if encrypted MKa⟨t, MURB, serial⟩.

Asymmetric:EK−1
a (M) =MK−1

a

DK1
a
(︁
EK−1

a (M)
)︁

=M

DK−1
a

(︁
EK1

a (M)
)︁

=M

Symmetric:EKa (M) =MKa

DKa
(︁
EKa (M)

)︁
=M

hashing (unsalted):H (M) = HM

hashing (salted):HS a (M) = HS a
M

9

In general, subscripts denote selectors to differentiate the same type’s values, and superscript
denotes relevant parameters to operations expressed. The subscripted and superscripted
pieces of information are omitted if not needed.

We refer to the components of a VortexMessage as follows:

Prefix component:PREFIX = DK1
a
(︁
PK−1

a
)︁
= D (P)

Header component:HEAD = DK1
a
(︁
HK−1

a
)︁
= D (H)

Route component:ROUTING = DK1
a
(︁
RK−1

a
)︁
= D (R)

In general, a decrypted block is written as a capitalized multi-character boldface sequence.
An encrypted block is expressed as a capitalized, single character, boldface letter.

4.2 Code and Commands

We write code blocks as a light grey block with line numbers:
1 public c l a s s H e l l o {
2 public s t a t i c void main (S t r i n g a r g s []) {
3 System . p r i n t l n (" H e l l o . ␣ " + a r g s [1]) ;
4 }
5 }

Commands entered at the command line are in a grey box with a top and bottom line.
Whenever root rights are required, the command line is prefixed with a “#”. Commands not
requiring specific rights are prefixed with a “$”. Lines without a trailing “$” or “#” are output
lines of the previous command. If long lines are split to fit, a “←↩” is inserted to indicate that
the system inserted a line break for readability.

su -
javac Hello.java
exit
$java Hello
Hello.
$java Hello "This is a very long command-line that had to be broken to fit into the code box ←↩

displayed on this page."
Hello. This is a very long command-line that had to be broken to fit into the code box ←↩

displayed on this page.

4.3 Hyperlinking

The electronic version of this document is hyperlinked. Readers may click references to
the glossary or the literature to find the respective entry. Chapter or table references are
clickable as well.

10 CHAPTER 4. NOTATION

IIPa
rt

Relevant Concepts and
Technologies

Where does a snake’s tail start?
My son Florian

12 PART II. RELEVANT CONCEPTS AND TECHNOLOGIES

13

In this part, we shed light on important concepts and technologies related to our work.
Chapter 5 relates to some basic concepts of anonymity, such as a definition and some metrics.
We furthermore introduce Zero Trust and several other concepts often used in conjunction
with anonymity-related systems. Chapter 6 covers cryptographic-related research and
summarizes some important facts which form the base for our future design. Lastly, chapter 7
collects some research on the topic of censorship circumvention.

We focus on the general concepts and technologies of anonymity and elaborate on their
relation to our problem.

5 Anonymity and Trust-Related Research
While there is much research on anonymity and trust, many basics remain insufficiently
researched. Definitions for basic terms such as anonymity or censorship are rare. There is no
common agreement for such terms. Measuring degrees of censorship or anonymity is even
more challenging. We were unable to find metrics for measuring anonymity that cover all or
even most aspects or enable the correct automated measurement of anonymity.

5.1 Definition of Anonymity

As the definition of anonymity, we take the definition as specified in [124].

“ Anonymity of a subject means that the subject is not identifiable within a set of
subjects, the anonymity set.1 ”and

“ Anonymity of a subject from an attacker’s perspective means that the attacker
cannot sufficiently identify the subject within a set of subjects, the anonymity set.1 ”We define the anonymity set as the set of all possible subjects within a supposed message. A

subject’s anonymity towards an observing third party is crucially related to our adversary
model.

Furthermore, we define that “sender anonymity” is available if a sender may send a message
and the recipient cannot identify the sender in the anonymity set. Similarly, a system
provides “receiver anonymity” if the sender cannot identify a message’s recipient within an
anonymity set.

5.2 k-Anonymity

k-anonymity is a term introduced in [3]. This work claims that entities are not responsible for
an action if an observer cannot match a specific action to fewer than k entities. In contrast,
the metric k may be dependent on the subject’s location and personal circumstances.

The paper distinguishes between Sender k-anonymity, where the sending entity can only be
narrowed down to a set of k entities and Receiver k-anonymity.

14 CHAPTER 5. ANONYMITY AND TRUST-RELATED RESEARCH

The size of k is a crucial factor. One of the criteria is the legal requirements of the respective
jurisdiction. Depending on the jurisdiction, it is usually impossible to prosecute someone if
an action is not directly coupled to one person.

The problem is that under normal circumstances, k is either not constant or decreases over
time. Therefore, an anonymity protocol must ensure that a sender or receiver set of k entities
is either unidentifiable or has a sufficient size so that k is adequately sized even when
decreasing over time.

5.3 ℓ-Diversity

In [99] an extended model of k-anonymity is introduced. In this paper, the authors emphasize
that it is possible to break a k-anonymity set if additional information is available, which may
be merged into a data set so that a distinct entity can be filtered from the k-anonymity set. In
other words, if an anonymity set is too tightly specified, additional background information
might be sufficient to identify a specific entity in an anonymity set.

It might be arguable that a k-anonymity in which a member is not implicitly k-anonymous
remains sufficient for k-anonymity in its sense. However, the point made in this work is right
and is taken into account. Their approach is to introduce an amount of invisible diversity
into k-anonymous sets, so that common background knowledge is no longer sufficient to
isolate a single member.

5.4 t-Closeness

While ℓ-diversity protects the identity of an entity, it does not prevent information gain. A
subject in a class has the same attributes. This is where t-closeness [118] comes into play.
t-closeness is defined as follows:

“ An equivalence class is said to have t-closeness if the distance between the distri-
bution of a sensitive attribute in this class and the distribution of the attribute in
the whole table is no more than a threshold. A table is said to have t-closeness if
all equivalence classes have t-closeness. ”While in statistics working with cases and exact figures, we may, possibly, identify the

distance between attributes of a class for a single set of classes reflecting a defined distribution
at a given point in time. Whenever looking at a varying set of characteristics, such a metric
seemed an impractical value. Therefore we discarded this value as a metric for our protocol.

5.5 Zero Knowledge Proofs

In [63] and later [38] the authors introduce Zero-Knowledge Proofs (ZKP), which allow
proving the knowledge of a secret without revealing any detail about the secret itself. Other
authors further broadened this concept by allowing proof that calculations (e.g., shuffles)
have been carried out accordingly. ZKPs are powerful companions in today’s anonymity
systems to detect cheating nodes.

15

Their disadvantages are typically a high computational and bandwidth consumption for the
proof and possibly a complex interaction between the prover and the verifier.

We attempted to secure the computation of our routing operations with ZKPs and failed.
The operations carried out, especially calculations with S-Boxes, as within AES, and the
concept of crypto-agility was too complex to be secured. Depending on the crypto-agility
scheme used, the verifier would require knowledge of the operations carried out, which was
not acceptable for our system. We therefore dropped the attempt to secure our operations
through ZKPs.

5.6 Censorship

As a definition for censorship, we take

“ Censorship: The cyclical suppression, banning, expurgation, or editing by an indi-
vidual, institution, group, or government that enforces or influences its decision
against members of the public — of any written or pictorial materials which that
individual, institution, group, or government deems obscene and “utterly without
redeeming social value,” as determined by “contemporary community standards.” ”The definition is attributed to Chuck Stone, Professor at the School of Journalism and Mass

Communication, University of North Carolina. Please note that “Self Censorship” (not
expressing something in fear of consequences) is also a form of censorship.

In our more technical view we reduce the definition to

“ Censorship: A systematic suppression, modification, or banning of data in a network
by either removal or modification of the data, or systematic influencing of entities
involved in the processing (e.g., by creating, routing, storing, or reading) of this
data. ”This simplified definition narrows down the Internet location as it is the only appropriate

location for us. Furthermore, it limits the definition to the maximum reach within that
system.

5.6.1 Censorship Resistance

A censorship-resistant system is a system that allows the entities of the system and the data
itself to be unaffected from censorship. Please note that this does not deny the presence of
censorship per se. It still exists outside the system. However, it has some consequences for
the system itself.

• The system must be either undetectable or out of reach for a censoring entity.
The possibility of identifying a protocol or data allows a censoring entity to suppress
the use of the protocol itself.

• The entities involved in a system must be untraceable.
Traceable entities would result in a means of suppressing real-world entities participating
in the system.

16 CHAPTER 5. ANONYMITY AND TRUST-RELATED RESEARCH

5.6.2 Parrot Circumvention

In [76] Houmansadr, Brubaker, and Shmatikov express that it is easy for a human to deter-
mine decoy traffic as the content is easily identifiable as generated content. While this is
true, there is however a possibility to generate “human-like” data traffic to a certain extent.
As an adversary may not assume that his messages are replied to, the problem does not
compare to a real Turing test. There remains only a “passive observer Turing test”, enabling
the potential nodes but not the observer to choose the messages.

In our design, this is covered by the blending layer, which generates the visible part of the
message. The blending layer generates messages which contain either obviously machine-
generated contextless messages or simple messages following tweet-styled patterns.

5.7 Single Use Reply Blocks and Multi-Use Reply Blocks

Chaum first introduced the use of reply blocks in [25]. In general, a routing block is a
structure allowing to send a message to someone without knowing the targets’ real address.
Reply blocks may be differentiated into two classes “Single Use Reply Blocks” (SURBs) and
“Multi-Use Reply Blocks” (MURBs). SURBs may be used once, while MURBs may be used a
limited or unlimited number of times.

Our research discovered that if a routing protocol is deterministic, an adversary may use
the traffic generated by a MURB to identify some of the message’s properties. Depending
on the type of attack, the block has to be repeated very often. For this reason, we limited
the number of replays. The concept is tha in our case we have a routing block, which might
be used up to n times (0 < n < 127). It is easily representable in a byte integer (signed or
unsigned) on any system. It is large enough to support human communication sensibly and
to not add too much overhead when re-requesting more MURBs. The number should not
be too large because if a MURB is reused, the same traffic pattern is generated, making the
system susceptible to statistical attacks.

5.8 Zero Trust

Zero trust is not an academically defined concept. It is widely misused by many marketing
departments of well-known devices and applications related to security. The first citation of
the idea was in [82] where Kindervag introduced this concept.

Kindervag compares the traditional approach as an M&M (crunchy shell and soft inner part)
and introduces the zero trust principle in three concepts:

“ 1. Ensure That All Resources Are Accessed Securely Regardless Of Location

2. Adopt A Least Privilege Strategy and Strictly Enforce Access Control

3. Inspect and Log All Traffic

”

17

This concept applies to security and not to anonymity. We therefore had to adopt this
concept, without violating anonymity.

1. Ensure that all resources are accessed securely regardless of location
We ensure that control over the security-relevant parameters remains at all times within
the originator of a message. The violation of transport security should not be possible
by malfunctioning or poorly configured nodes.

2. Adopt a least privilege strategy and strictly enforce access control
As a design principle, information is kept hidden as much as possible within the system.
We always assume that an adversary

• makes some or all information within his reach available to others.

• analyzes all information within his reach.

• willingly breaks protocol rules to gain information, disrupts information flows, or
other advantages.

3. Inspect and log all traffic
We skip that part, as it is not suitable for a system offering anonymity. Logs gen-
erated over a long period might result in data that allows reducing anonymity sets
retrospectively or minimizing their size.

6 Related Cryptographic Theory and Algorithms
Whenever handling obfuscating data and maintaining data integrity, cryptography is the
first tool in an implementer’s hand, as a vast amount of research in this area already exists.
For this work, we focused on algorithms either researched in depth and implemented or
research, which seemed very valuable when putting this work into place.

In symmetric encryption in this paper always assumes that

DKa
(︁
EKa (M)

)︁
= M (6.1)

For a key Kb , Ka this means

DKa
(︁
EKb (M)

)︁
, M (6.2)

DKb
(︁
EKa (M)

)︁
, M (6.3)

A good symmetric algorithm has withstood academic crypto-analysis over a considerable
period of time and has not been weakened so far. Multiple algorithms are ideally not built
similarly and not rely on the same mathematical problems.

The following candidates have been identified for our work:

• AES
NIST announced AES in 2001 as a result of a contest. The algorithm works with four
operations (subBytes, ShiftRows, mixColumns, and addRoundKey). These operations
are repeated depending on the key length 10 to 14 times.

AES is, up until now (2020) unbroken. It has been weakened in the analysis described
in [161], which reduces the complexity by roughly one to two bits.

18 CHAPTER 6. RELATED CRYPTOGRAPHIC THEORY AND ALGORITHMS

• Camellia
The Camellia algorithm is described in [103]. The key sizes are 128, 192, and 256.
Camellia is a Feistel cipher with 18 to 24 rounds depending on the key size. Up until
2020, no publication claims to break this cipher.

For all asymmetric encryption algorithms in this paper, we may assume that. . .

DK1
a
(︁
EK−1

a (M)
)︁
= M (6.4)

It is important that

DK−1
a

(︁
EK−1

a (M)
)︁
, M (6.5)

DK1
a
(︁
EK1

a (M)
)︁
, M (6.6)

For any other key pair K p
a , K p

b

DK−1
b

(︁
EK1

a (M)
)︁
, M (6.7)

DK1
b

(︁
EK1

a (M)
)︁
, M (6.8)

DK−1
b

(︁
EK−1

a (M)
)︁
, M (6.9)

DK1
b

(︁
EK−1

a (M)
)︁
, M (6.10)

When looking for well-researched algorithms basing on different mathematical problems
and having well-defined outlines, numbers decreased dramatically.

• RSA
In 1978 the authors Rivest, Shamir, and Adleman published with [133] a paper which
revolutionized cryptography. In their paper, the authors described an encryption method
later called RSA, which required a key pair (Ka) referenced as public (K1

a) and private
keys (K−1

a). This system’s novelty was that anything encrypted with the public key was
only decryptable with the private key and vice versa.

RSA is up until 2020 not publicly known to be broken (unless a too small key size is used).
However, Shor described in 1997 an algorithm that should enable quantum computers to
break RSA far faster than traditional computers. In the section 6.2 we further elaborate
these effects.

• ECC
The elliptic curves were independently suggested by [108] and [84] in 1986. Elliptic
curve cryptography started to be widely deployed in the public space in 2006. Since
then, it seems to compete excellenty with the well established RSA algorithm. While
being similarly well researched, ECC has the advantage of far shorter key sizes for the
same grade of security.

• McEliece
McEliece was first implemented and then removed again. The key size to gain equivalent
security to RSA1024 was ≈ 1MB. By utilizing Gaussian elimination the key size may
be reduced for transport by approximately factor 10. Even the resulting key size was
still impractical and thus discarded as well. We were unable to identify any quantum
capable algorithm that is able to reduce the key size of McEliece algorithm.

19

• NTRU
In [73] Hoffstein, Pipher, and Silverman described the NTRU algorithm. The inclusion
of this algorithm was disputed as it is patented in the United States as US7031468. It
was included because the company Security Innovation holding the patent released the
NTRU algorithm in March 28th 2018 to the public domain, according to a blog entry on
the company website. While NTRU is not as well researched as RSA, it has been around
for more than 20 years without being significantly affected by known attacks.

• ElGamal
We rejected ElGamal as a cryptosystem to include. It bases on the same mathematical
problems for cryptoanalysis as RSA (discreet logarithms) but is not as common as RSA.

As introduced in [51], homomorphic encryption was from the beginning a strong candidate to
be used in our work. Unfortunately, we did not find a way to apply the core addRedundancy
operation in homomorphic encryption. Transforming the original data to the GF space
efficiently to use matrices was not feasible and thus rejected.

6.1 Deniable Encryption

Deniable encryption was considered out-of-bounds for this work. The main reason is that
the presence of encryption (which is not deniable in our cases) may be sufficient for a censor
to block a message. Adding a layer to ensure that encryption is deniable does not add
valuable properties to our system, as the sheer presence of encryption might be sufficient for
censorship.

6.2 Key Sizes

The question of key sizes is difficult to answer as it depends on the current and future
possibilities of an adversary, which again relies on non-foreseeable research. We collected
several recommendations.

Encrypt II (http://www.ecrypt.eu.org/) currently recommends for a “foreseeable future” 256
bits for symmetric and asymmetric encryption based on the factoring modulus 15424 bits.
Elliptic curve cryptography and hashing should be sufficient if used with at least 512 bits.
Assuming the focus is reduced to the next ≈ 20 years. In that case, the key size recommen-
dations are reduced to 128 bits for symmetric encryption, 3248 bits for factoring modulus
operations, and 256 bits for elliptic curves and hashing.

According to the equations proposed by Lenstra in [90] an asymmetric key size of 2644 bits
respectively symmetric key length of 95 bits, or 190 bits for elliptic curves and hashing should
be sufficient for security up to the year 2048.

According to [31] (superseding well known and often used [48]) data classified up to “top
secret” should be signed with RSA 3072+ or ECDSA P-384. They recommend AES 256 bits for
symmetric encryption, for hashing at least SHA-384, and for elliptic curves, a 384 bit-sized
key.

As it might seem unwise to consider the recommendation of a potential state-sponsored
adversary and the formulas proposed by Lenstra do not explicitly take quantum computers
into account, we follow the advice of ENCRYPT II.

http://www.ecrypt.eu.org/

20 CHAPTER 6. RELATED CRYPTOGRAPHIC THEORY AND ALGORITHMS

Furthermore, taking all recommendations together, it seems that all involved parties assume
the most trust in elliptic curves rather than asymmetric encryption based on factoring
modulus.

6.3 Cipher Mode

The cipher mode defines how multiple blocks encrypted with the same key are handled. The
main characteristics of cipher modes to us are:

• Parallelizable
Can multiple parts of a plaintext be encrypted simultaneously? This feature is important
for multi CPU and multi-core systems as they can handle parallelizable modes more
efficiently by distributing them on multiple CPUs.

• Random access in decryption
Random access in decryption allows efficient partial encryption of a ciphertext.

• Initialization vector
An initialization vector has advantages and disadvantages. One disadvantage is that
involved parties must share an initialization vector with the message or before distribut-
ing it. It is essential to understand that the initialization vector itself usually is not
treated as a secret, as it is not part of the key.

• Authentication
Authentication guarantees that the deciphered plaintext has been unmodified since
encryption. It does not make a statement over the identity of the party encrypting the
text. Such an identifying authentication is referred to as signcryption.

We evaluated the most common cipher modes for suitability. For MessageVortex, we focused
on modes with parallelizable, random access modes and did not carry out authentication. In
addition to the characteristics mentioned above, the main focus was on whether there is an
open implementation in Java, which is reasonably tested.

• ECB (Electronic Code Book)
ECB is the most basic mode. Each block of the cleartext is encrypted on its own. This
results in a big flaw: blocks containing the same data will always transform to the
same ciphertext. This property makes it possible to see some structures of the plaintext
when looking at the ciphertext. This solution allows the parallelization of encryption,
decryption, and random access while decrypting. Due to these flaws, we rejected this
mode.

• CBC (Cipher Block Chaining)
CBC extends the encryption by XORing an initialization vector into the first block before
encrypting. For all subsequent blocks, the ciphertext result of the preceding block is
taken as XOR input. This solution does not allow parallelization of encryption, but
decryption may be paralleled, and random access is possible. As another disadvantage,
CBC requires a shared initialization vector. As with most IV bound modes, an IV/key
pair should not be used twice, which has implications for our protocol.

21

• PCBC (Propagation Cipher Block Chaining)
CBC extends the encryption by XORing, not the ciphertext but a XOR result of ciphertext
and plaintext. This modification denies parallel decryption and random access compared
to CBC.

• EAX
EAX was broken in 2012 [109] and is thus rejected for our use.

• CFB (Cipher Feedback)
CFB is specified in [43] and works as precisely as CBC with the difference that the
plaintext is XORed and the initialization vector, or the preceding cipher result is en-
crypted. CFB does not support parallel encryption as the ciphertext input from the
prior operation is required for an encryption round. CFB does however allow parallel
decryption and random access.

• OFB
[43] specifies OFB and works precisely as CFB except for the fact that not the ciphertext
result is taken as feedback, but the result of the encryption before XORing the plaintext.
This denies parallel encryption and decryption, as well as random access.

• OCB (Offset Codebook Mode)
This mode was first proposed in [134] and later specified in [135]. OCB is specifically
designed for AES128, AES192, and AES256. It supports authentication tag lengths of
128, 96, or 64 bits for each specified encryption algorithm. OCB hashes the plaintext of
a message with a specialized function HOCB(M). OCB is fully parallelizable due to its
internal structure. All blocks except the first and the last can be encrypted or decrypted
in parallel.

• CTR
CTR is specified in [97] and is a mixture between OFB and CBC. A nonce concatenated
with a counter incrementing on every block is encrypted and then XORed with the
plaintext. This mode allows parallel decryption and encryption, as well as random
access. Reusing IV/key-pairs using CTR is a problem as we might derive the XORed
product of two messages. This problem only applies where messages are not uniformly
random such as in an already encrypted block.

• CCM
Counter with CBC-MAC (CCM) is specified in [169]. It allows for padding and au-
thenticating encrypted and unencrypted data. It furthermore requires a nonce for its
operation. The size of the nonce is dependent on the number of octets in the length
field. In the first 16 bytes of the message, the nonce and the message size is stored. For
the encryption itself, CTR is used. It shares the same properties as CTR.

It allows parallel decryption and encryption as well as random access.

• GCM (Galois Counter Mode)
GCM has been defined in [105], and is related to CTR but has some major differences.
The nonce is not used (just the counter starting with value 1). An authentication token
auth is hashed with HGFmult and then XORed with the first cipher block to authenticate
the encryption. All subsequent cipher blocks are XORed with the previous result and
then hashed again with HGFmult. After the last block the output o is processed as follows:
HGFmult(o

⨁︀
(len(A)||len(B)))

⨁︀
EK0

(counter0). As a result, GCM is not parallelizable
and does not support random access.

22 CHAPTER 6. RELATED CRYPTOGRAPHIC THEORY AND ALGORITHMS

The mode was analyzed security-wise in 2004 and showed no weaknesses in the studied
fields [106].

GCM supports parallel encryption and decryption. Random access is also possible.
However, the authentication of encryption is not parallelizable. The authentication
makes it unsuitable for our purposes. Alternatively, we could use a fixed authentication
string.

• XTS (XEX-based tweaked-codebook mode with ciphertext stealing)
This mode is standardized in IEEE 1619-2007 (soon to be superseded). A rough overview
of XTS may be found at [101]. It was developed initially for disks offering random access
and authentication at the same time.

• CMC (CBC-mask-CBC) and EME (ECB-mask-ECB)
In [69] Halevi and Rogaway introduces a cipher mode which is extremely costly as it
requires two encryptions. CMC is not parallelizable due to the underlying CBC mode,
but EME is.

• LRW
LRW is a tweakable narrow-block cipher mode described in [164]. This mode shares the
same properties as EBC but without the same cleartext block’s weakness resulting in
the same ciphertext. Similar to XEX, it requires a tweak instead of an IV.

6.4 Summary of Cipher Modes

Table 6.1 shows a summary of all modes analyzed previously.

aaaaaa
Mode

Criteria auth Requires IV parallelizable random access

CBC × ✓ × ×

CCM × ✓ × ×

CFB × ✓ ✓ ✓
CTR × ✓ ✓ ✓
ECB × × ✓ ✓
GCM ✓ ✓ × ×

OCB ✓ ×1 × ×

OFB × ✓ × ×

PCBC × ✓ × ×

XTS × ✓2 ✓ ×

LRW × ✓2 ✓ ✓
CMC × ✓2 × ×

EME × ✓2 ✓ ✓

Table 6.1: Comparison of encryption modes in terms of the suitability.

GCM and OFB are only suitable in special cases for our protocol as they perform authenti-
cation, which we usually omit from a message. OCB and ECB are “IV-less” modes making
them very attractive for us. However, we need to consider that ECB is deemed broken and
the discovered flaws are relevant to us if not handled properly. Especially suitable from
performance perspective are CFB, CTR, ECB, LRW, and EME. Most of these implementations
are uncommon in crypto-libraries. We will use these findings when defining our supported
modes in section 14.3.

1included in auth
2Requires tweak instead of IV

23

6.5 Padding

A plaintext stream may have any length. Since we always encrypt in blocks of a fixed size,
we need a mechanism to indicate how many bytes of the last encrypted block may be safely
discarded.

Different paddings are used at the end of a cipher stream to indicate how many bytes belong
to the decrypted stream.

6.5.1 RSAES-PKCS1-v1_5 and RSAES-OAEP

This padding is the older of the paddings standardized for PKCS1. It is basically a prefix of
two bytes followed by a padding set of non-zero bytes and then terminated by a zero byte
and then followed by the message. This padding may provide a clue whether the decryption
was successful or not. RSAES-OAEP is the newer of the two padding standards

6.5.2 PKCS7

This padding is the standard used in many places when applying symmetric encryption up
to 256 bits key length. The free bytes in the last cipher-block indicate the number of bytes
being used. This makes this padding very compact. It requires only 1 byte of available data
at the end of the block. All other bytes are defined but not needed.

6.5.3 OAEP with SHA and MGF1 padding

This padding is closely related to RSAES-OAEP padding. However, the hash size is larger,
and thus the required space for padding is much higher. OAEP with SHA and MGF1 padding
is used in asymmetric encryption only. Due to its size, it is essential to note that the last
block’s payload shrinks to keyS izeInBits/8 − 2 − MacS ize/4.

In our approach, we chose to allow these four paddings. The allowed SHA sizes match the
allowed MAC sizes selected above. It is important to note that padding costs space at the
end of a stream. Since we are always using one block for signing, we have to ensure that
the chosen signing MAC and the bytes required for padding do not exceed the asymmetric
encryption’s key size. While this usually is not a problem for RSA as there are keys 1024+
bits required, it is a fundamental problem for ECC algorithms as there are much shorter
keys needed to achieve an equivalent strength compared to RSA.

We introduced an additional type of padding not related to these paddings. We required for
the addRedundancy the following unique properties. Unfortunately, we were unable to find
any padding which matched the following properties simultaneously:

• Padding must not leak successful decryption
For our addRedundancy operation, we required padding that had no detectable structure
as a node should not tell whether a removeRedundancy operation did generate content
or decoy.

• Padding of more than one block
Due to the nature of the operation, it is required to pad more than just one block.

24 CHAPTER 7. CENSORSHIP CIRCUMVENTION

Details of this padding are described in the section "Add and Remove Redundancy Operations”
in appendix A.

7 Censorship Circumvention
Several technical ways were explored to circumvent censorship. All seem to share the
following main ideas:

• Hide data (e.g., Tor pluggable transports).

• Copy or distribute data to a vast amount of places to improve the lifespan of data (e.g.,
Wikileaks).

• Outcurve censorship measurements (e.g., use a modified client to ignore connection
resets).

In the following section, we look at technologies and ideas handling these circumvention
technologies.

7.1 Covert Channel and Channel Exploitations

The original term of covert channels was defined by Lampson [88] as

“ Not intended for information transfer at all, such as the service program’s effect
on system load. ”This was defined in such a way as to distinguish the message flow from

“ Legitimate channels used by the confined service, such as the bill. ”The use of a legitimate channel such as SMTP and hiding information within this specific
channel is not a usage of a covert channel. We refer to this as channel exploitation.

7.2 Steganography

Steganography is important when it comes to unlinking information. [80] and [158] give a
very rough overview. As some of the types and algorithms address specific steganography
topics (e.g., some hide from automatic detection and others address a human message stream
auditor), we must choose carefully. In our specific case, the main idea is to hide within the
sheer mass of Internet traffic. A human auditor screening all messages within a jurisdiction
is considered a minor threat for obvious reasons. We will therefore focus on machine-based
censorship.

As we will later identify SMTP as one of the main transport protocols, we focussed on the
type of traffic found within this and similar protocols. Most of the binary data sent in SMTP
are jpg images (see table 15.1 on page 101). We limited our search to algorithms capable of

25

hiding binary data within these files. The number of academically researched options was
surprisingly low.

After reviewing the options, we decided to go for F5 [168]. It is a reasonably well-researched
algorithm that attracted many researchers. The original F5 implementation had a detectable
issue with artifacts [20] caused by the image’s recompression. This issue was caused only
due to a problem in the reference implementation, and the researchers meanwhile provided
a corrected reference implementation without the weakness.

YASS, as described in [153], was not considered a candidate. Although less researched,
researchers found multiple weaknesses [85, 94].

In general, the availability of steganographic implementations was incredibly poor. Most of
the algorithms are only available as M-code, simulators, or stream encoders, skipping all
real-world implementation problems.

7.3 Timing Channels

Timing channels are a specialized form of covert channels. In timing channels, the information
itself hides not within the channel’s data, but the usage of the channel works in such a
way that it is capable of reflecting the data. As we do not have control over the transport
channel’s timing, this is not an option.

7.4 Technical Forms of Censorship

There are many types of censorship available within technical systems. An in-depth under-
standing of the possibilities is required to understand the means of a censoring adversary.

7.4.1 Making Systems Unavailable by Censoring Lookups

This is one of the cheapest methods to create censorship. Lookup systems such as DNS
servers are modified so that traffic is no longer deliverable or redirected to a system controlled
by the censor.

Many jurisdictions have implemented such measures. It is considered a very cheap measure
of censorship. It is, however, very easy to outcurve. As soon as a user no longer uses adversary
controlled lookup services, this form of censorship is ineffective. In the case of DNS, this
means either:

• Using a public DNS server available worldwide.

• Using another protocol to hide the traffic .

– A protocol with tunneling capabilities like SSH may be used to reach a system
outside of the reach of the censoring adversary.

– Using a fully blown tunnel such as a VPN.

– Piggybacking a legitimate protocol such as DNS-over-HTTPS (DoH) [71] or DNS-
over-XMPP [23]

26 CHAPTER 7. CENSORSHIP CIRCUMVENTION

7.4.2 Making Systems Unavailable by Disrupting System Traffic

Disruption of traffic is achieved with packet filtering devices commonly referred to as
firewalls. These firewalls may filter any traffic to a given system. There are some considerable
disadvvantages to this system from the adversary’s point of view.

First, a censoring adversary requires high bandwidth. All traffic of a jurisdiction or target
must pass through such a filtering device. This is usually not easily feasible for a country. A
very high bandwidth system, such as the great China wall, uses a different approach. Instead
of filtering each packet, they concentrate on TCP connections. Each slightly suspicious
packet is copied to an analyzing system while the original message is routed normally. A
subsequent system then analyzes the copied packet or packet sequence. If the subsequent
system decides that the traffic should be censored, a connection reset is sent to the sender
and the recipient. Any client or server having standard protocol support will immediately
cease communication.

Secondly, the target must be identifiable on a technical level (e.g., IP address) as content-
based filtering is only feasible with unencrypted or weakly protected systems. This technical
identification is challenging as systems may change their addresses dynamically either due
to cloud-related elasticity or due to an incomplete view of a distributed system (e.g., only a
Loadbalancer is visible). An IP is therefore not necessarily synonymous with a single user or
server.

When looking at the client side, they are often hidden behind a network address translation
(NAT) or a proxy collapsing all users onto a single IP address. The same applies to the
server-side, where cloud washing and reverse proxy infrastructures optimize bandwidth
usage. Sometimes, in-depth information or insight into a protocol may help narrow down
a user (e.g., by a set cookie or a fingerprint). When using encrypted connections, ordinary
attackers have trouble carrying out a Man in the Middle (MitM) attack. This may be feasible
for a larger attacker on a state or Internet service provider (ISP) level. To do so, such an
adversary requires access to a publicly accepted CA, creating fake certificates for the attacker.
It may be safely assumed that such access is given considering the standard set of CAs,
which is trusted nowadays (depending on the delivered trust store, we found between 100
and 200 root CAs).

Identifying a target is especially difficult if a target comprises multiple possible targets
from which some may be valid. This is the case when using a reverse proxy and using the
same platform for numerous purposes. Streaming or movie platforms may contain content
that should be banned from a censors’ point of view and content that comprises legitimate
content such as educational material. From the censors’ point of view, this content can
not be reasonably split. This since typically, only the provider of the service can carry our
selective censoring on the system. This is why governments try to shift the responsibility of
censorship to the providers by establishing self-censorship.

7.4.3 Making Systems Unavailable by Interfering with System Traffic

Censoring may be achieved in more subtle or less abusive ways, such as traffic shaping or
content moderation. We already outlined that the platform provider usually has content
moderation in place. This is either achieved by allowing an entity to control the platform
directly or indirectly to apply censorship or use legal means to force the platform into
self-censorship.

27

Other means of censorship are:

• Redirecting all traffic to certain systems to filter according to the needs of a censor.

• Shaping traffic in such a way that the service is deemed no longer available to people of
a jurisdiction (e.g., by slowing down traffic in such a way that streaming is no longer a
viable option).

• Redirecting traffic to similar platforms employing a form of censorship (either a local-
ized form of the respective information or an alternate provider of the same form of
information).

7.5 Spread Spectrum in Networking Protocols

Another possibility of sending anonymous information is “spread spectrum” transmission.
In spread spectrum transmission, a radio signal is distributed in the frequency domain. This
makes it difficult for an adversary to identify and disrupt those radio signals in question.

While in use when carrying out radio-electric transmission, the spread spectrum is very
uncommon in network protocols. We could employ multiple protocols and packet types to
transmit data. Unlike in radio signals, such data is always available as discrete information
pieces, and an adversary may choose to block them at any point. Unlike in radio transmission,
where the available spectrum is almost indefinite and not fully blockable by practical means,
full censorship does not oppose a problem. We may completely disrupt all communication
by no longer routing it.

28 CHAPTER 7. CENSORSHIP CIRCUMVENTION

IIIPa
rt

Anonymous Communication
Systems

It was the anonymity. He wanted to
be unknown, unpossessed by others’
knowledge of him. That was freedom.

Ling Ma, Severance

30 PART III. ANONYMOUS COMMUNICATION SYSTEMS

31

In chapter 8 we search for common Internet protocols suitable for hiding our traffic or
accommodating data. In chapter 9 we focus on technologies employed for problems related
to anonymization or information hiding in general and analyze in chapter 10 available
systems in this field.

8 Well Known Standard Protocols

8.1 SMTP and Related Post Office Protocols (1982)

Today’s mail transport is mostly carried out via SMTP protocol, as specified in [83]. This
protocol has proven to be stable and reliable. Most of the messages are passed from an
Mail User Agent (MUA) to an SMTP relay of a provider. From there, the message is directly
sent to the recipient’s SMTP server and then to the recipient’s server-based storage. At any
time the recipient may connect to his server-based storage and may optionally relocate the
message to a client-based (local) storage. The delivery from the server storage to the MUA
of the recipient may occur by message polling or by message push (whereas a push–pull
mechanism usually implements the latter).

To understand the routing of a mail, it is essential that we understand the whole chain
starting from a user(-agent) until arriving at the target user (and being read!). To simplify
this, we used a consistent model that includes all components (server and clients). The figure
8.1 shows all involved parties of a typical mail routing. It is essential to understand that mail
routing remains the same regardless of the client. However, the availability of mail at its
destination changes drastically depending on the type of client used. Furthermore, the mail
flow and control over it may differ on the client and the message processing on the server.

The model has three main players storage, agent, and service. Storages are endpoint facilities
storing emails received. Not explicitly shown are temporary storages such as spooler queues
or state storages. Agents are simple programs handling a specific job. Agents may be
exchangeable by other similar agents. A service is a bundle of agents that is responsible for a
specific task or task sets.

In the following paragraphs (for definitions), the term “email” is used synonymously to the
term “Message”. “Email” has been chosen over “messages” because of its frequent use in
standard documents.

An MUA accesses local email storage, which may be the server storage or a local copy. The
local copy may be a cache only copy, the only existing storage (when emails are fetched
and deleted from the server after retrieval), or a collected representation of multiple server
storages (cache or authoritative).

In addition to the MUA, the only other component accessing local email storage is the Mail
Delivery Agent (MDA). An MDA is responsible for storing and fetching emails from the local
mail storage. Emails destined for other accounts than the current one are forwarded to
the MTA. Emails destined for a user are persistently stored in the local email storage. It is
essential to understand that email storage does not necessarily reflect a single mailbox. It
may as well represent multiple mailboxes (e.g., a rich client-serving multiple IMAP accounts)
or a combined view of multiple accounts (e.g., a rich client collecting mail from multiple POP
accounts). In the case of a rich client, the local MDA is part of the user agent’s software. In
the case of an email server, the local MDA is part of the local email store (not necessarily of
the mail transport service).

32 CHAPTER 8. WELL KNOWN STANDARD PROTOCOLS

Mail endpoint (destination user) Target mail server

Forwarding mail server

Mail Server (ISP relay)

MSS

Mail enpoint (originating user)

MTS

MTS

Network connection (thru internet)

Local connection (IPC)

MTS

Permanently connected and running server

Periodically or sporadically working service

Permanently running service

MSS

server MRA

MUA

client MRA

MSA

MTA MSA

client MRA

MUA

local MDAremote MDA

MSAMTAserver MRA

MSA

remote MDA

MTA

local MDA

MSA

local MDA

MTA

server MRA

MTA

local mail storage

local mail storage
local mail storage

local mail storage

Internet

local MDA

Figure 8.1: Mail agents.

On the server-side, there are usually two components (services) at work. A “Mail Transport
Service” (MTS) responsible for mail transfers, and a “Mail Storage System” which offers the
possibility to store received mails in a local, persistent store.

An MTS generally consists of three parts. For incoming connects, there is a daemon called
Mail Receiving Agent (Server MRA) is typically a SMTP listening daemon. A Mail Transfer
Agent (MTA) is responsible for routing, forwarding, and rewriting emails. Moreover, a Mail
Sending Agent (MSA) is accountable for transmitting emails reliably to another server MRA
(usually sent via SMTP).

33

An MSS consists of local storage and delivery agents, which offer uniform interfaces to access
the local store. They also deal with replication issues, and grant should take care of the
atomicity of transactions committed to the storage. Typically there are two different kinds
of MDAs. Local MDAs offer possibilities to access the store via efficient (non-network based)
mechanisms (e.g., IPC or named sockets). This is usually carried out with a stripped-down
protocol (e.g., LMTP). For remote agents, there a publicly – network-based – agent available.
Common Protocols for this Remote MDA include POP, IMAP, or MS-OXCMAPIHTTP.

Mail endpoints consist typically of the following components:

• A Mail User agent (MUA)

• A Local Mail storage (MUA)

• A Local Mail Delivery Agent (Local MDA)

• A Mail Transfer Agent (MTA)

• A Mail Sending Agent (MSA)

• A Mail Receiving Agent (MRA)

Only two of these components have external interfaces. These are MSA and MRA. MSA
usually uses SMTP as transport protocol. This leads to some distinctive features.

• Port number is 587 (specified in [60]).
Although port numbers 25 and 465 are valid and usually have the same capabilities,
they are only for mail routing between servers. Mail endpoints should no longer use
them.

• Connections are authenticated.
Unlike normal server-to-server (relay or final delivery) SMTP connections on port 25,
the server should always authenticate clients of some sort. This may be based on data
provided by the user (e.g., username/password or certificate) or data identifying the
sending system (e.g., IP address) [60]. Failure in completing authentication may result
in this port being misused as a sender for UBM.

Mail User Agents (MUA) are the terminal endpoint of email delivery. Mail user agents may be
implemented as fat clients on a desktop or mobile system, or as an interface over a different
generic protocol such as HTTP (Web Clients).

Server-located clients are a special breed of fat clients. They share the properties of fat clients
except that they do not connect to the server. The client application itself has to be run on
the server where the mail storage persists. This changes delivery and communication with
the server. Instead of interfacing with an MSA and a client MDA, they may directly access
the server’s local mail storage. The local mail storage may be implemented as a database in
a user-specific directory structure on these systems.

8.1.1 Fat Clients

The majority of mail clients are fat clients. They have a locally installed application on the
client device to access mail allowing advanced features such as offline reading or bandwidth

34 CHAPTER 8. WELL KNOWN STANDARD PROTOCOLS

optimization. These clients score over the more centralistic organized web interfaces (web
clients) in that they may offer mail availability even if an Internet connection is not available
(through client-specific local mail storage). They furthermore provide the possibility to collect
emails from multiple sources and store them in the local storage. Unlike mail servers, clients
are assumed not to always be online. They may be offline most of the time. To guarantee
the availability of a particular email address, a responsible mail server for a specific address
collects all emails (e.g., MSS). It provides a consolidated view of the database when a client
connects through a local or remote MDA.

As these clients vary heavily, it is mandatory for the MDA that they are well specified. Not
doing so would result in massive interoperability problems. Most commonly, the protocols
IMAP, POP and EWS are used. For email delivery, the SMTP protocol is used.

Fat clients are commonly used on mobile devices. According to [24] in August 2012, the most
typical fat email client was Apple Mail client on iOS devices (35.6%), followed by Outlook
(20.14%), and Apple Mail (11%). Email Client Market Share [46] as a more recent source lists
in February 2014 iOS devices with 37%, followed by Outlook (13%), and Google Android
(9%).

8.1.2 Server-Located Clients

Server-located clients are an absolute minority. This type of client was common in the days
of centralized hosts. An example for a server-located client is the Unix command “mail”. This
client reads email storage from a file in the user’s home directory.

8.1.3 Web Clients

Presently, web clients are a common alternative to fat clients. Most large provider companies
use their proprietary web client. According to [46] the most common web clients are "‘Gmail"’,
"‘Outlook.com"’, and "‘Yahoo! Mail"’. All these interfaces do not offer a public plug-in
interface. However, they typically do offer IMAP or similar interfaces. This is important for a
future, generalistic approach to the problem.

8.2 S/MIME (1996)

S/MIME is an extension of the MIME standard. The MIME standard allows in simple text-
oriented mails an alternate representation of the same content (e.g., as text and as HTML)
or splitting a message into multiple parts that may be encoded. It is important to note that
MIME encoding is only effective in the body part of a mail.

S/MIME, as described in [127], S/MIME extends this standard with the possibility to encrypt
mail content or sign it. Practically this is achieved by either putting the encrypted part of
the signature into an attachment. It is essential to know that this method leaks significant
pieces of the data.

As the mail travels directly from sender to recipient, both involved parties are revealed. Nei-
ther the message subject nor the message size or frequency is typically hidden. This method
offers limited protection assuming an adversary who is only interested in the messages’
content. It does not protect us from the adversary defined in our case.

35

The trust model is based on a centralistic approach involving generally trusted root certifica-
tion authorities.

8.3 Pretty Good Privacy (1996)

Exactly as S/MIME, PGP [53] builds on the basis of MIME. Since the trust model in PGP is
peer-based, the encryption technology does not significantly differ (as seen from the security
model).

Similar to S/MIME, PGP does not offer anonymity. Sender and endpoints are known to
all routing nodes. Depending on the version of PGP, some meta information or parts of
the message content such as the subject line, the sender and receiver’s real name, and the
message size are leaked.

An important fact from PGP is that peer-based approaches offer limited possibilities for trust.
The trust in PGP is based on the peer review of users. This peer review may give an idea of
how well verified the key of a user is.

8.4 XMPP

XMPP (or formerly Jabber) is defined in the RFCs [138, 139, 136, 137] and features an own
extension process on the base of XEPs. The community is very active in the development
and has almost 200 proposed, drafted, active, final, or experimental XEPs.

At its core, XMPP is an open, secure, decentralized, and extensible standard for real-time
capable protocol, allowing the efficient transfer of messages and signal status data. It allows
single or multi-user chats and may be used as dialing protocol for voice, video file transfer,
and for similar content.

We use XMPP in our work as proof of concept that a switch of protocols (in our case, SMTP
and XMPP) is feasible.

The fact that the two protocols significantly differ in their cores makes it an ideal use-case.
XMPP is synchronous (whereas SMTP is asynchronous, is not MIME-based (whereas SMTP
is)), and has an own implementation for file transfers. On the other hand, it offers many
advantages, such as the availability of end-to-end encryption or additional store-and-forward
services.

9 Distribution for Anonymizing Protocols and
Information Routing

Information routing and distribution is not a novelty in privacy research. Researchers around
the globe have searched for means of privacy. One good example was the patent in the
introduction of Almon B. Strowger [157]. More recent activities are the infamous “How to
share a secret” [148], which used Lagrange polynomials to distribute shares of information
across multiple hosts for privacy. A single polynomial would be attackable. Shamir applied a

mod p operation to hide characteristics of a curve (as long as p is large and prime). The
system had many problems which were addressed by subsequent work such as [163].

36 CHAPTER 9. INFORMATION IN ANONYMIZING PROTOCOLS

Lagrange polynomes form an essential part when it comes to networking and privacy. They
are commonly used in the form of Reed–Solomon-codes for securing unreliable connections
(e.g., [4]), distributing data [148].

Our approach is to use Lagrange not primarily for distributing data but to generate unidenti-
fiable decoy traffic. When applying a Lagrange polynomial to a message, all factors contain
parts of the original message. Given enough factors of the polynomial, anyone may recon-
struct the original message. As a result, an adversary cannot tell which parts of the traffic
are decoy and which part is the message, as all parts can recover the original message.

9.1 Mixing

Mixes were first introduced by “Untraceable Electronic Mail, Return, Addresses, and Digital
Pseudonyms” [25] in 1981. The basic concept in a mix is as follows. We do not send a message
directly from the source to the target. Instead, we use a proxy server or router in between,
which picks up the packet, anonymizes it, and forwards it to the recipient or to another mix.
If we assume that we have at least three mixes cascaded, we then can conclude that:

• Only the first mix knows the true sender

• All intermediate mixes know neither the true sender nor the true recipient (as the data
comes from mixes and is forwarded to other mixes)

• Only the final mix knows the final recipient.

This approach (in this simple form) has several disadvantages and weaknesses.

• In a low latency network, an adversary may trace the message by analyzing the timing
of a message.

• We can emphasize a path by replaying the same message multiple times (assuming we
control an evil node), thus discovering at least the final recipient.

• If we can “tag” a message (with content or an attribute), we may follow the message.

In 2003 Rennhard and Plattner analyzed the suitability for mixes as an anonymizing network
for masses. They concluded that there are three possibilities to run mixes.

• Commercial, static MixNetworks

• Static MixNetworks operated by volunteers

• Dynamic MixNetworks

They concluded that in an ideal implementation, a dynamic mix network where every user
operates one mix is the most promising solution as static mixes always might be hunted by
an adversary.

37

9.2 Anonymous Remailers

Remailers have been in use for quite some time. There are several classes of remailers, and
all of them are somehow related to Mix Networks. There are “types” of remailers defined.
Although these “types” offer some hierarchy, none of the more advanced “types” seem to
have more than one implementation in the wild.

Pseudonymous remailers (also called Nym Servers) take a message and replace all information
pointing to the original sender with a pseudonym. This pseudonym may be used as a reply
address. The most well known pseudonymous remailer possibly was anon.penet.fi run
by Johan Helsingius. Several times, this service was forced to reveal a pseudonym’s true
identity before Johan Helsingius decided to shut it down. For a more in-depth discussion of
pseudonymous remailers, see 10.2.1

Cypherpunk remailers forward messages like pseudonymous remailers. Unlike pseudony-
mous remailers, Cypherpunk remailers decrypt a received message, and its content is for-
warded without adding a pseudonym. A reply to such a message is not possible. They
may, therefore, be regarded as a “decrypting reflector” or a “decrypting mix” and may be
used to build an onion routing network for messages. For a more in-depth discussion of
type-1-remailers, see section 10.2.2.

Mixmaster remailers are very similar to Cypherpunk remailers. Unlike them, Mixmaster
remailers hide the messages, not in an own protocol, but use SMTP instead. While using
SMTP as a transport layer, Cypherpunk remailers are custom (non-traditional) mail servers
listening on port 25. For a more in-depth discussion of type-2-remailers, see section 10.2.4.

Mixminion remailers extend the model of Mixmaster remailers. They still use SMTP but
introduce new concepts. New concepts in Mixminion remailers are:

• Single Use Reply Blocks (SURBs)

• Replay prevention

• Key rotation

• Exit poicies

• Dummy traffic

For a more in-depth discussion of Mixminion remailers see section 10.2.8.

9.3 Onion Routing

Onion routing is a further development of the concept of mixes. In onion routers, every
mix receives a message which is asymmetrically encrypted. By decrypting the message, the
next hop’s name and the content to be forwarded can be obtained. The main difference in
this approach is that the mix decides about the next hop in traditional mix cascades. In an
onionized routing system, the message chooses the route.

Onionized messages typically have the problem of a constant size loss throughout the system.
Some systems counter this effect by separating the routing setup from the message path.

38 CHAPTER 9. INFORMATION IN ANONYMIZING PROTOCOLS

While tagging attacks are far more demanding (if we exclude side-channel attacks to break
sender anonymity), the traditional attacks on mixes are still possible. Thus when an adversary
is operating entry and exit nodes, it is straightforward for them to match the respective
traffic.

One very well known onion routing network is Tor (https://www.torproject.org). For more
information about Tor see section 10.2.6.

9.4 Garlic Routing

Garlic routing is an improved form of onion routing. It stops onionized messages from
continuously loose contents on their way. A garlic router collects multiple, independent
messages into one message before routing. This compensates for the “size loss effect” of
onionized systems.

9.5 Crowds

Crowds is a network that offers anonymity within a local group. It works as follows:

• All users add themselves to a group by registering on a so-called “blender”.

• All users start a service (called JonDo).

• Every JonDo takes any received message (might be from him as well) and sends it with
a 50% chance either to the correct recipient or to a randomly chosen destination.

While crowds, as specified in [129], does anonymize the sender from the recipient rather
well, the system offers no protection from someone capable of monitoring crowds traffic. The
system may, however, be easily attacked from within by introducing collaborating JonDos. It
was further developed to D-Crowds [36], ADU/RADU [114], Freenet [30] and others.

Furthermore, the blender is aware of all JonDos and thus of particular interest for any
observing or censoring adversary. The control of the blender enables an adversary to split the
network into controllable parts, adding a high likelihood of discovering the original sender.

9.6 Mimic Routes

Mimics are a set of statical mixes that maintain a constant message flow between the static
routes. If legitimate traffic arrives, the pseudo traffic is replaced by legitimate traffic. An
outside observer is thus incapable of telling the difference between real traffic and dummy
traffic.

If centralized mixes are used, the system lacks the same vulnerabilities of sizing and observing
the exit nodes as all previously mentioned systems. If we assume that the sender and receiver
operate a mixer themselves, the system would no longer be susceptible to timing or sizing
analyses. The mimic routes put a constant load onto the network. This bandwidth is lost
and may not be reclaimed. It does not scale well as every new participant increases the need

https://www.torproject.org

39

for mimic routes and creates (in the case of user mixes) a new mimic load. Furthermore, the
mixes are easily identifiable as their characteristic data stream contrasts with other network
service streams.

9.7 Distributed Hash Tables

Anonymous file transfer is sometimes supported by Distributed Hash Tables (DHTs). Systems
like I2P (see geti2p.net), or Freenet [30] base on DHT. Hash tables are typically used for
an efficient lookup of data distributed within a system. As they support the distribution
of data, they may implicitly support error tolerance, robustness and, thus, availability.
They furthermore may be used as distribution mechanism allowing self-organization, load
balancing, and scalability.

In most anonymity systems using DHT, DHTs are either used to cloak nodes or services
while enabling routing to them, or to build complex anycast structures.

9.8 Dining Cryptographer Networks

DC networks are based on the work “The Dining Cryptographers Problem: Unconditional
Sender and Recipient Untraceability” by Chaum [26]. In this work, Chaum describes a
system allowing a one-bit transfer (the specific paper talks about the payment of a meal).
Although all the DC net participants are known, the system makes it unable to determine
who sent a message. The message in a DC-net is readable for anyone. This network has the
disadvantage that a cheating player may disrupt communication without being traceable.

Several attempts have been made to strengthen the proposal of Chaum [64, 167, 62, 33].
However, no one succeeded without introducing significant disadvantages on the privacy
side.

9.9 Private Information Retrieval

Private Information Retrieval (PIR) [29] was developed by Chor et al. It is a public database
organized in slots where some clients write into specific slots and other clients access the
whole database so that the server is unable to tell what data was accessed. It is a simplified
or weaker version of an oblivious transfer (1-out-of-n). PIR was described in theory and had
two different approaches. A computationally secured approach (cPIR), which is the weaker
one of the two approaches, and the information-theoretic secured approach (itPIR).

PIR was the foundation or an inspiration for many other systems and extensions such as
CSPIR [96], BddCpir [96], Popcorn [67], or Riposte [32].

10 Proposed Academic Protocols and Implementations
In this section, we list various proposed anonymity systems regardless of their age or state.
We analyze their inner workings and try to compare them in a unified way. This comparison
was a basis for selecting our approach.

https://geti2p.net/

40 CHAPTER 10. ACADEMIC PROTOCOLS AND IMPLEMENTATIONS

10.1 Characteristics of Known Anonymity Implementa-
tions

Table 10.1 shows the protocols analyzed in the next sections ordered by type and year
according to the classification scheme introduced in [150].

Network structure Routing
info

Communication model Performance and deployability

Connect Symmetry Node selection

To
po

lo
gy

D
ir

ec
ti

on

Sy
nc

hr
on

iz
at

io
n

R
ol

es

H
ie

ra
rc

hy

D
ec

en
tr

al
iz

at
io

n

N
et

w
or

k
vi

ew

U
pd

at
in

g

R
ou

ti
ng

Ty
pe

Sc
he

du
lin

g

D
et

er
m

in
is

m

Se
le

ct
io

n
se

t

se
le

ct
io

n
pr

ob
ab

ili
ty

La
te

nc
y

C
om

m
un

ic
at

io
n

m
od

e

Im
pl

em
en

ta
ti

on

C
od

e
av

ai
la

bi
lit

y

C
on

te
xt

/a
pp

lic
at

io
n

R
es

en
de

rs
,o

ni
on

ro
ut

er
s

an
d

m
ix

es

Chaum Mixes1 ⊠ −→ , � · ·� · · · é é � · · · ≡ Ë ª ⊚ H B Ë é @
Babel1 ⊠ −→ , � · ·� · · · ⊙ é

� · · ·

· · · � · · ·
≡ Ë ª ⊛ H B é é @

Mixmaster1 ⊠ −→ , � · ·� · · · ⊙ G# é � · · · ≡ é ª ⊛ H B Ë Ë @
Crowds1 ⊠ ←→ , � · · � · · � · · · ⊙ � · · · � · · · ≡ é ª ⊛ L B Ë é �
Tor1 ⊏ ←→ � � · · � · · � · · · ⊙ � � · · · ≡ é m! ⊚ L B Ë Ë �

I2P1 □ −→ , � · · � · · � · · · ○ � � · · · � é m! * L � Ë Ë
�@
�

Mixminion1 ⊠ −→ , � · ·� · · · ⊙ � � · · · ≡ é ª ⊛ H B Ë Ë @
𝒫51 ⊏ −→ , � · · � · · � ✤ ⊙ G# � � � Ë , ⊚ H B Ë é �

AP31 ⊏ ←→ , � · · � · · � · · · ○ G# � · · · � · · · ≡ é ª ⊛ L � é é
�@
�

SOR ⊠ ←→ � � · ·� · · · ○ é � · · · ≡ Ë , ⊛ L � Ë Ë �@
Vuvuzela ⊠ ←→ � � · ·� ✤ é é � · · · ≡ Ë , ⊛ M B Ë Ë Ò
Riffle ⊠ ←→ � � · · � · · � ✤ é é · · · � · · · ≡ Ë m! ⊚ L B Ë Ë �
Karaoke ⊠ −→ � � · ·� ✤ é é � · · · ≡ é , ⊛ L B Ë é �Ò
MessageVortex ⊠ ←→ � � · · � · · � · · · ○ G# � � · · · ≡ é , ⊛ H B Ë Ë @

PI
R Riposte ⊠ −→ � � · ·� · · · ⊙ é � ≡ é ª ⊛ H B Ë Ë �Ò

Pung ⊠ ←→ , � · ·� · · · é é � ≡ Ë ª ⊛ M B Ë é �Ò

D
H

T

Tarzan1 □ ←→ , � · · � · · � · · · ○ � � · · · ≡ é ! ⊛ L � Ë Ë �
MorphMix1 ⊏ ←→ , � · · � · · � · · · ⊙ G# � · · · � · · · ≡ é m * L � Ë Ë �

Salsa1 ⊏ ←→ ,
� · · � · · �

� · · � · · �
· · · ○ G# � · · · � · · · ≡ é ª ⊛ L � Ë é �

D
C

Chaum´s DCnet1 ⊠ −→ , � · · � · · � · · · é � � ≡ Ë ª ⊚ H B é é �
Herbivore1 ⊏ −→ , � · · � · · � ✤ ⊙ G# � � ≡ Ë m ⊚ M B Ë é �
Dissent in numbers1 ⊏ −→ , � · ·� ✤ ⊙ G# � � ≡ Ë m ⊚ H B Ë Ë �
Verdict ⊠ −→ � � · ·� ✤ ⊙ G# � � ≡ Ë m ⊚ H B Ë Ë �

B
C Hordes ⊠ ←→ , � · · � · · � · · · ⊙ � � ≡ é ª ⊛ L B Ë é �

Atom ⊏ −→ � � · ·� · · · ⊙ ? � · · · ≡ é ª ⊛ H B Ë Ë �Ò

Table 10.1: Classification table for anonymization protocols.

In the table, some historical systems were omitted. Additionally, SCION was omitted as it did
not fit anywhere into the table. It may be seen as a remixing system, but too many aspects
were intermixed with the routing logic to give really a clear classification. Furthermore, the
SOR classification is highly speculative as this system has many missing aspects, making it
difficult to categorize correctly. Where the paper does not give an exact indication of how a
part is solved, we made guesses in favor of the work.

As key indicators for similar protocols, we identified the following characteristics:

• It needs to be peer-to-peer (� · · � · · �) or hybrid (� · · � · · �).
The hybrid role is only allowed when no dedicated servers for the protocol are required.
Dedicated servers would have the disadvantage of repression against administrators.

• They need to be fully decentralized (○).
An adversary may use central infrastructures to disrupt and control them.

• Routing has to be source-controlled (� · · ·) or broadcast-based (�).
In any infrastructure where mixes decide about the route, an adversary may redirect a
message to nodes under his control.

• The nodes must be user-defined (,) or the system must have information-theoretic
promises that even if all nodes collaborate, the system is not compromized

41

In every system where the security relies on nodes’ trust, a user should always be in full
control.

• The system must work in a high latency mode (H)
Every low/medium latency system makes promises regarding the traffic, which makes
the system detectable.

Unfortunately, all of the protocols found implement their “own” protocol, rendering them
easily censorable.

10.2 Resenders, Onion Routers, and MixNet-Based Sys-
tems

10.2.1 Pseudonymous Remailers (1981)

A pseudonymous remailer allows reaching people via a pseudonymous email address. The
remailing server removes all traces of the original sender and inserts a pseudonymous
email instead. The foundation of these remailers can be found in an early article by David
Chaum [25].

One of the most famous remailers was the Penet remailer (anon.penet.fi). This remailer only
lasted from 1993 to 1996 and was shut down after two compromises involving the Chruch of
Scientology. Details of the closure can be found in [93].

It drastically shows the problem of legal prosecution even within so-called “democratic
environments”.

10.2.2 Cypherpunk Remailers (approx. 1993)

With the failing of anon.penet.fi, it became clear that the weakest spot of a single server
infrastructure the information stored on the server and the vulnerability of their owner. The
new type-1-remailers score over the existing type-0-remailers by using encryption for the
message. The time of the invention of the first type-1-remailers is unclear. Setting up a
type-1-remailer was typically achieved by using Procmail together with a small script calling
PGP binaries and then sending the resulting message to the next recipient. By combining
multiple type-1-remailers, an onion-like structure of the message was achievable.

This approach was promising, but it was still observable. An observation was possible by
correlating the message sizes (e.g., strictly decreasing) and timing information. Furthermore,
remailers were known, and authorities were able to ban infrastructure and capable of mon-
itoring their routing activities. The standard mail logs of such servers provided valuable
evidence for legal prosecution if not disabled.

10.2.3 Babel (1996)

Babel was an academic system defined in a paper by Gülcü and Tsudik in 1996 [66]. It was
developed at IBM Zurich Research Laboratory. It was a mixing system using onionized
addresses. The sender remains anonymous while he may provide a reply routing block called

42 CHAPTER 10. ACADEMIC PROTOCOLS AND IMPLEMENTATIONS

RPI. If both parties want to remain anonymous, the initiator’s RPI was deployed in a forum
thread. Anyone using this block adds an RPI for its address to the message.

This system has all the disadvantages of a system using MURBs. Traffic highlighting,
timestamps, and similar attacks are possible. Furthermore, the source of the RPIs on the
message board was by design unclear and therefore not trustworthy.

10.2.4 Mixmaster-Remailers (1996)

Similar to Cypherpunk remailers, the Mixmaster remailers worked with onion-like encrypted
messages. The protocol was based on Chaum’s MixNets in [25] and further developed by L.
Cotrell in 1996.

In contrast to type-1-remailers, the use of cascading systems to remail became systematic.
The end-user used specialized software to build and send Mixmaster messages.

Mixmaster messages were still traceable by message size. The system did not support reply
blocks. A user had to know all Mixmaster nodes to use the system. The last node was
typically an exit node sending the message in the clear to the final recipient. This behavior
still allowed the use of Usenet.

10.2.5 Crowds (1997)

Crowds is an anonymity network for browsing and was the starting point for many similar
systems such as D-Crowds, AN.ON and may be seen as a predecessor for Tor specialized in
forwarding HTTP requests.

In Crowds, a user joins a crowd by registering at the blender node of a Crowd network a
JonDo service. The network has, in addition to the blender, a variable number of nodes
called JonDos. These nodes are forwarding nodes that either send a message to another
random JonDo (including themselves) or forward it to the final recipient. The behavior is
chosen based on a probability factor. The behavior is constant for a period (connection) and
renegotiated from time to time (usually hourly). Furthermore, JonDos are required to strip
any personal information from a request.

A JonDo acts as a proxy for a web browser or other JonDos. Therefore, JonDos’ have plaintext
access to the routed requests and replies. Messages between JonDos’ are symmetrically
encrypted. From the senders’ point, Crowds offers perfect anonymity towards the receiver.

While the concept of blending into a crowd of members was inspiring for many other
solutions, it has specific weaknesses. JonDos may be collaborating, or the blender may
create subnetworks of collaborating JonDos’ to break anonymity. Furthermore, the strict
forwarding property makes it susceptible to the predecessor attack [171], which intersects
multiple (past) paths striving to reduce the anonymity set down to isolate the originating
node.

10.2.6 Tor (2000)

Tor is one of the most common onion router networks these days and onionizes generic TCP
streams. It is specified in [39]. It might be considered one of the most advanced networks
since it has a considerable size, and much research has been carried out.

43

According to [159] Tor is a network consisting of multiple onion routers. Each client first
picks an entry node. It establishes an identity, obtains a listing of relay servers, and chooses
a path through multiple onion routers. The temporary identity links to such a path and
should be changed regularly along with its identity. Transferring data works by splitting the
data into equally sized cells of 512 bytes.

There is a centrally organized directory in the Tor network, knowing all tor relay servers.
Any Tor relay server may be a directory server as well.

Many attacks involving the Tor networks have been discussed in the academic world such
as [120, 11, 12, 14, 15, 37, 47] and some have even been exploited actively. In the best case, the
people discovering the attacks did propose mitigation to the attack. Some of these mitigations
flowed back into the protocol. Some general thoughts of the attacks should be emphasized
here for treatment in our protocol.

Being an exit node may be a problem in some jurisdictions. In general, it seems to be accepted
that routing traffic with unknown content (to the routing node) is not regarded as illegal
per se. By being unable to tell malicious or illegal traffic apart from legitimate traffic, this is
not a problem. However, being an exit node can mean that unencrypted and illegal traffic
is leaving the routing node. In this specific case, operators of a relay node might fear legal
prosecution. Tor nodes may proclaim themselves as “non-exit nodes” to avoid the possibility
of legal prosecution.

Furthermore, several DoS-Attacks have been carried out to overload parts of the Tor network.
Most of them do a bandwidth drain on the network layer.

Attacking anonymization has been achieved in several ways. First of all, the most common
attack is a time-wise correlation of packets if in control of an entry and an exit node. A
massive attack of this kind was published in 2014 and can be found on the Tor website
(relay early traffic confirmation attack). This attack was possible because Tor is a low latency
network. Another attack is to identify routes through Tor by statistically analyzing the traffic
density in the network between nodes. More theoretical attacks focus on the possibility of
controlling the directory servers to guarantee that an entity may be de-anonymized because
it is using compromised routers. A generic analysis of low latency systems also relevant for
Tor can be found in [77].

Generally, the effectiveness of monitoring single nodes or whole networks is disputed. Ac-
cording to a study by Johnson et al. in 2013 [78], a system in the scale of PRISM should
be able to correlate traffic of 95% of the users within a “few days”. Other sources based on
the Snowden Papers claim that so far the NSA was unable to de-anonymize users of Tor.
However, since these papers referenced “manual analysis”, the statement may be disputed
when looking at automated attacks.

According to Tors’ plugable transport page, it is at the time of writing impossible to use
transborder Tor traffic at least in China, Uzbekistan, Iran, and Kazakhstan. In censored
countries, Tor offers so-called bridged transports. Currently deployed transports in the
standard Tor browser bundle package are obfs4, Meek, FTE, and ScrambleSuit. Only Meek is
listed as working in China. Meek achieves this by hiding its traffic in a standard protocol
(HTTPS) and using public proxies such as Appspot.

[144] is an excellent survey listing recent developments and attacks within the Tor project.

https://blog.torproject.org/blog/tor-security-advisory-relay-early-traffic-confirmation-attack
https://www.torproject.org/docs/pluggable-transports

44 CHAPTER 10. ACADEMIC PROTOCOLS AND IMPLEMENTATIONS

10.2.7 I2P (2001)

The name I2P is a derived from “Invisible Internet Project” according to geti2p.net. The first
binary release on SourceForge dates back to 2001. The system itself is comparable to Tor for
its capabilities. Major differences are:

• P2P-based.

• Packet-switched routing (Tor is “circuit-switched”).

• Different forward and backward routes (called tunnels).

• Works pseudonymously.

• Supports TCP and UDP.

I2P has not attracted as much attention as Tor so far. Thus, it is difficult to judge its real
qualities.

In 2011 Herrmann and Grothoff presented in [70] an attack. As I2Ps security model is chosen
based on IP addresses, the authors propose to use several cloud providers in different B-Class
networks. By selectively flooding peers, an adversary may extract statistical information.
The paper proposes an attack based on the heuristic performance-based peer selection.
The paper’s main critics were that the peer selection might be influenced by an adversary,
enabling him to recover data on a statistical basis.

10.2.8 Mixminion-Remailers (2002)

Mixminion was the standard implementation of a type-3-remailer. It tried to address many
previously unresolved issues.

A Mixminion router splits messages in equally sized chunks and supports SURBs. Further-
more, replay protection and key rotation were available. Unlike the previous remailer types,
Mixminion was no longer using SMTP as the transport protocol. Instead, Mixminion intro-
duced a new transport protocol. The sources of this remailer are available on GitHub under
https://github.com/mixminion/mixminion.

As a received message had to be decoded by the final recipient, the final recipient had to be
aware of the Mixminion system.

Mixminion-Networks have been privacy-wise criticized for the following:

• Pseudonymous single use reply blocks are broken (Chapter 4.2 in [146]).

• Central directory of mixes.

• Not enough users.

According to https://mixminion.net, the software’s first release was in December
2002 and was discontinued in 2008. Since 2011, the sources are available on GitHub. There
were forks in 2011, but currently, all forks seem to be inactive since at least 2016 as there are
no new commits.

https://geti2p.net/
https://github.com/mixminion/mixminion
https://mixminion.net

45

10.2.9 𝒫5 (2002)

The Peer-to-Peer Personal Privacy Protocol is defined in [149]. It provides sender-, receiver-
and sender–receiver anonymity. According to the project page of 𝒫5, there is only one
simulator available for the protocol.

The transport layer problem has been wholly ignored, as there is no precise protocol speci-
fication. As there is only a rough outline of the messaging and the crypto operations, 𝒫5

offers minimal possibilities for analysis.

10.2.10 AN.ON (2003)

AN.ON, as suggested in [50], is a mixing network. It generates messages in equally sized
chunks and sends them in fixed time slots after random mixing. Its implementation is called
JAP and may be found under https://anon.inf.tu-dresden.de/. JAP is in many ways similar
to the capabilities of Tor. The network was at the time of writing much smaller (10 JonDos
compared to 6500 relays in the Tor network).

While the approach is both simple and effective, it is not suitable against a powerful adversary.
First, an adversary may be able to observe the forwarding when on the system. Second, due
to the timing behavior, tunnels belonging to each other may be identified, and third, the
package size information leaks as well.

10.2.11 AP3 (2004)

AP3, as defined in [110], is an anonymous communication system and very similar to crowds.
It performs a random walk over a set of known nodes. Not all nodes are known to anyone,
and all nodes are aware of the final recipient.

The system is susceptible to numerous attacks, as shown by [111], and does not withstand
our adversary as the final recipient is known to the routing nodes.

10.2.12 Cashmere (2005)

Cashmere is specified in [173]. It defines a protocol for the use of Chaum mixes. Unlike most
of the protocols, the Chaum mixes in Cashmere are virtual. So-called relay groups represent
them. Each mix in the relay group may be used as an equivalent mix to all other mixes in
the same group.

This design means that the failure of one mix does not result in the non-delivery of a message.

No client implementation could be found on the Internet. The project homepage
http://current.cs.ucsb.edu/projects/cashmere/ has not been updated since 2005. This suggests
that this project is either dead or sleeping.

10.2.13 SOR (2012)

SSH-based onion routing (SOR). [44] criticize the complex and monocultural landscape of
anonymizing software and proclaims a very simple approach based on onionized SSH tunnels

http://current.cs.ucsb.edu/projects/cashmere/

46 CHAPTER 10. ACADEMIC PROTOCOLS AND IMPLEMENTATIONS

to forward TCP streams. The system might be modified further to forward UDP or other
protocols asn well by using an instance of netcat converting UDP traffic into a forwardable
data stream.

The system was not really up to date at the time. While using a common, encrypted, and
well-established protocol for the onionization, the system lacks obvious protection against
timing attacks. Which is due to the fact that either no access control is carried out or
users have pseudonymous accounts on the target system (making them identifiable) or the
predecessor attack [171] which were all well known at the time.

Unlike most other systems, SOR does not introduce an own protocol but uses an existing
protocol with many legitimate uses. This makes it difficult for an adversary to ban the
protocol. Its approach in terms of hiding may be seen as somewhat similar to our approach.

10.2.14 PGA (2013)

Pretty Good Anonymity [155] attempted to create a single node anonymity service. The
client is running a local proxy which encapsulates the client traffic into the “PGA Tunneling
Protocol”. The protocol may hide traffic by adding additional (adaptive) decoy traffic (dummy
traffic). It may be seen as a low latency encrypted SSH tunnel with additional anonymity
features such as decoy traffic. It is capable of tunneling in a generic way any kind of TCP
connection. UDP is not known to be supported.

We did not include it into our table as it never achieved broad adoption and there is no
routing involved.

The system does not withstand our adversary, as the PGA tunnelling protocol is detectable.
Unlike most of the systems, an implementation of the system in Java is available.

10.2.15 Vuvuzela (2015)

Vuvuzela was presented by Van Den Hooff et al. in [166]. It is a scaleable anonymity system
offering a high throughput between millions of users. The system is available as a PoC
implementation written in Go. An adversary is immediately aware that clients use Vuvuzela.
He is, however, unable to match up with communication peers over time. The Vuvuzela
client software is available under and connects to a Vuvuzela network forming a centralized
infrastructure. According to its authors, Vuvuzela infrastructure may handle up to 10 million
users with an average bandwidth cost of 3.7KB/s per user.

Vuvuzela routes user messages through a chain forward and back again before redistributing
the final messages to their recipients. Each node adds additional decoy traffic to further im-
prove the anonymity of the message path. The authors calculated that each user contributes
≈ 12 KB

s traffic adding up to 30GB per month. A server node had an average throughput
166 MB

s . Vuvuzela protects the messages of peer partners as long as one server in the used
chain is not controlled by the adversary. It however does not protect the fact that both peer
partners are using Vuvuzela.

Vuvuzela assumes that the chain of servers and the involved public keys are known to the
client ahead of time. Messages are delivered in synchronized rounds into common, ephemeral
dead drops created by the users. The ephemeral dead drop design makes it impossible for an
adversary to identify users over time.

https://vuvuzela.io/

47

10.2.16 Riffle (2016)

Riffle [87] is developed by MIT in Python and Go as an alternative to Tor, addressing some
of its flaws. Riffle servers are mixes collecting user information, shuffling it, and sending it
to the next mixes or targets. The shuffling is secured by a zero-knowledge-proof while the
permutation itself is hidden.

The messages are sent in clusters, whereas every client sends or receives data in every round
(mimicking traffic). The sent blocks are padded to a fixed value to prevent size analysis. Such
a system is far better protected against timing attacks than Tor at the price of a considerable
higher latency and bandwidth.

Thus far, the Riffle system has not attracted much interest in the academic world. While
being extended, we were unable to find an attack for Riffle. However, as it uses its own
protocol, traffic is identifiable and thus, censorable.

10.2.17 MCMix (2017)

In [5] Alexopoulos et al. introduce a messaging system based on Multiparty Computation
(MPC) suitable for routing up to 100K users in less than a minute for tweet-sized messages.
The protocol has a theoretical parallelizable variant to increase the size of such a group. The
network load remains constant, depending on the maximum supported message size. The
authors estimated a constant data stream of 78 MB

Month when using a 144 (SMS/tweet-sized)
message and a round time of 1 minute. As in other protocols (e.g., PIR or Riposte), MCMix
uses “dead drops” to replace connections to communicate between two or more entities.

The system uses a predefined hierarchy of entry servers for receiving all input data, an MPC
server cluster to handle the MPC calculations, and output servers to provide messages to the
final recipients. Accounts are derived by generating a public key from the username. This
eliminates the need for a centralized PKI.

The authors implemented the input and the output servers but only simulated the MPC part.

10.2.18 SCION (2017)

SCION [121] is a clean slate Internet protocol. While SCION is not an anonymizing protocol,
it contains many interesting features. Unlike with the traditional networks, we have the
possibility of influencing the routing of data within SCION. Furthermore, with PHI [28] and
Dovetail [145], SCION may feature strong and fast anonymity features.

Unfortunately, as this is a clean slate Internet design, it is currently not commonly available.
As it is easily identifiable, it enables easy censorship as the relevance is due to its current
availability of no importance. A censoring adversary may just ban and censor SCION entirely.

10.2.19 Karaoke (2018)

Karaoke [89] is a low latency messaging system offering an alternative to high latency
systems such as Vuvuzela or Stadium. Karaoke claims to have a latency up to 10 times lower
than Vuvuzela or stadium.

48 CHAPTER 10. ACADEMIC PROTOCOLS AND IMPLEMENTATIONS

Karaoke uses ‘dead drops” to transport messages. The access is organized in rounds, and in
each round, all users access one dead drop. The access itself is controlled by a series of mixes
shuffling the requests and replies. The path of the message through the mixes is chosen by
the sender. Messages within the Karaoke system have a fixed size.

Karaoke does not withstand an active adversary. In an environment with a passive observer,
Karaoke may make some very strong promises about privacy. However, since Karaoke uses
its defined own infrastructure, its users are easily identifiable.

10.3 PIR-Based Systems

10.3.1 Riposte (2015)

Riposte [32] is an anonymity messaging system inspired by DC networks that scale well for
tweet-sized messages. The messages are sent on a regular basis (time epochs). The system
achieves sender anonymity by distributing parts of a message over multiple hosts. To reduce
the size of the transferred message, Riposte uses a Distributed Point Function (DPF) described
in [61]. This reduces the messages transferred to each server to

√
databaseS izeBytes.

In some ways, Riposte turns the PIR system upside down. Instead of someone writing in a
database slot and then not disclosing which slot was accessed by a recipient, Riposte makes
the writing of the slot anonymous, and the recipient may freely access the interesting slots.
The classification is however not clear as it involves mixes as well as DC-nets.

10.3.2 Pung (2016)

Pung as introduced in [9] is a further development of PIR [29] which was proposed in 1995
and implemented in systems such as Riffle [87], PIR-Tor, or Pynchon Gate.

As many other systems, Pung works in rounds. To reduce the set of records to be fetched
from the PIR database, labels are applied to the records. By filtering by labels, the recipient
hides within an anonymity set. The sender chooses the labels, and the recipient has to query
a sufficient set of labels to create a sufficiently large anonymity set. As this is difficult to
accomplish on a random scale while maintaining credible traffic, we believe that this is one
of the major weaknesses of Pung.

The authors of Pung claim that a four server setup may handle up to 135K messages per
minute when having 32K active users. The message’s size was chosen to be 256 bytes
matching the block size of the applied crypto.

As most other anonymity systems, Pung has its protocol and thus remains easily detectable
and censorable. The traffic overhead is substantial and is on a per-user base. The speed of
message delivery is dependent on the time of the chosen epoch.

49

10.4 Distributed Hash Tables

10.4.1 Tarzan (2002)

Tarzan is a P2P IP protocol using UDP to communicate. It is specified in [56]. Tarzan nodes
may be used to anonymize Internet traffic in general. An initiator on the original sender
machines encapsulates traffic into a layered UDP package and sends the package through
a mix like relayd’s. The last relayd acts as an exit node. A replier may send answers the
opposite way. Each relayd knows its next and previous relayd. To minimize the impact of
observation, Tarzan forwards packets only every 20ms and features replay protection.

10.4.2 MorphMix (2002)

MorphMix was a thesis published by Rennhard and Plattner in [130]. MorphMix was
among the first to introduce a pure peer-to-peer anonymity protocol. Users and mixes were
indistinguishable, and there was no cover traffic generated to save bandwidth. For anonymity,
it uses a source-controlled, onionized routing system. Nodes are discovered by querying any
random first node. It was a circuit-based mix system for networking anonymity. The core of
the network was collision detection. This detection was circumvented by [160]. Since then,
no new papers were published and the project seems to be dead.

In many respects, MorphMix may be seen as an ancestor of MessageVortex. However, Mes-
sageVortex goes far beyond the capabilities of MorphMix while eliminating most of its
weaknesses.

10.4.3 Salsa (2008)

Salsa was proposed in [116] and described a circuit-based anonymization pattern based on
distributed hash tables (DHT). An implementation for Salsa is available, but it is not public.
[111] claims that by combining active and passive attacks, anonymity can be compromised.

10.5 Dining Cryptographer-Based Networks

10.5.1 Herbivore (2003)

Herbivore is a network protocol designed by Goel et al. in [62]. It is based on the dining
cryptographers paper [26]. No herbivore client or an actual protocol implementation could
be found on the Internet at the time of writing. Wikipedia lists Herbivore as “dormant or
defunct”.

10.5.2 Dissent (2010)

Dissent is defined in [33]. It is an anonymity network based on DC-nets. A set of servers
forms these DC-nets, of which at least one in the used net must be trustworthy, and none

50 CHAPTER 10. ACADEMIC PROTOCOLS AND IMPLEMENTATIONS

may be misbehaving. A server failure results in the stalling of all message delivery using this
server.

In an attempt to improve Dissent Wolinsky et al. introduced in [170] a modified version.
This improved version mainly addresses the scalability issues of the original design. Further-
more, the authors addressed some information leakage and scalability flaws in the original
approach.

10.5.3 Verdict (2013)

Verdict [34] is an improved version of Dissent using proactively verifiable DC-Nets. It uses
zero-knowledge proofs (ZKPs) to detect misbehaving nodes. The authors claim that it can
process 1000 senders within 10 seconds.

Unlike many other systems, Verdict withstands an observing adversary as defined within
this work. However, due to the message patterns generated when communicating even
when steganographically hiding the traffic, a censoring adversary would detect the traffic
generated. Tampering with the protocol itself would be detectable, and thus honest nodes
could exclude misbehaving nodes from such a DC-net.

10.6 Broadcast and Multicast Networks

10.6.1 Hordes (2002)

Hordes was a multicast-based protocol for anonymity specified in [92]. Hordes is a Crowds
system that uses multicast services for the reply, thus speeding up the latency loss of Crowds.
Hordes uses the ability to handle multicast addresses by routers to generate a dynamic set
of receivers and then send messages. It assumes that a single observer or router does not
know all participating peers.

This assumption is correct for a local observer. Unfortunately, it is not sufficient for the
adversary defined in this paper.

10.6.2 Atom (2016)

Atom [86] is an asynchronous anonymity service for small messages claiming to be scaleable
and transferring up to a million tweet-sized messages in 28 minutes. Its PoC implementation
is written in Go and was tested by creating a series of AWS-based EC2 instances. It provides a
broadcast primitive with limited reach by grouping its servers into small groups. All messages
have equal length, and groups organize all received messages in batches and distribute them
to other server groups. This results in a mix cascade somehow similar to the Mixminion
system. However, the system extends the mix cascades with zero-knowledge proof so that
tampering may be discovered to a certain extent.

According to the paper, many aspects of Atom remain unsolved. Key distribution is proposed
to be carried out by trustworthy third party “directory authorities”. To remain anonymous,
at least one honest node per group is required. Identifying malicious users in Atom requires

51

a collaborative effort involving the publications of the entry groups’ private keys. Malicious
users are proposed to be blacklisted by the directory authorities.

As most of the other protocols, Atom implements its protocol making it susceptible to
censorship.

10.7 Distributed Storage Systems

10.7.1 Freenet (2000)

Freenet was initially designed to be a fully distributed data store [30]. Documents are stored
in an encrypted form. Downloaders must know a document descriptor called CHK containing
the file hash, the key, and some background about the crypto being used. A file is stored
more or less redundantly based on the number of accesses to a stored file. The primary goal
of Freenet is to decouple authorship from a particular document. It furthermore provides
fault-tolerant storage, which improves the caching of a document if requested more often.

Precisely as I2P, Freenet is not analyzed thoroughly by the scientific world.

Freenet features two protocols FCPv2 acts as the client protocol for participating in the
control of Freenet storage. The Freenet client protocol allows us to insert and retrieve data,
query the network status, and manage Freenet nodes directly connected to their node. FCPv2
operates on port 9481, and blocking is thus easy, as it is a dedicated port.

The Freenet project seems to be under active development as pages about protocols were
updated in the near past (the last update on the FCPv2 Page was August 8th 2020 at the time
of writing).

10.7.2 Gnutella (2000)

Gnutella is not a protocol for the anonymity world per se. Instead, the Gnutella protocol
implements general file sharing on a peer-to-peer basis. This approach is the most interesting
aspect of Gnutella in this context. Furthermore, Gnutella is proven to be working with a
large number of clients.

The current protocol specification of Gnutella is available at http://rfc-
gnutella.sourceforge.net/. While the Gnutella network is defunct, the approaches to
solving some of the peer-to-peer aspects were very interesting.

10.7.3 Gnutella2 (2002)

Despite its name, Gnutella2 is not the next generation of Gnutella. It was a fork in 2002
from the original Gnutella and was developed in a different direction. The specification
of Gnutella2 is available at http://g2.doxu.org. Just as its predecessor, Gnutella2
seems to be dead. The last update to the main site was in 2016 and the last update to the
protocol on 2007.

http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://g2.doxu.org

52 CHAPTER 10. ACADEMIC PROTOCOLS AND IMPLEMENTATIONS

IVPa
rt

The MessageVortex System

Thinking is the hardest work there is,
which is probably the reason, so few

engage in it.

Henry Ford, American industrialist
and founder of Ford Motor Co.

54 PART IV. THE MESSAGEVORTEX SYSTEM

55

In this section, we describe the core parts of the MessageVortex protocol. Unlike most other
academic attempts, we do this based on an adversary capable of banning our technology.
We therefore are not able to focus solely on the anonymity property. Instead, we first collect
requirements for such a system in chapter 11. Based on these requirements, we explain our
architectural concepts and decisions in chapter 12. We then build an outline of our protocol
focusing on the protocol’s main properties without going too much into implementation
details. In chapter 13, we describe the protocol and its key concepts in depth. We explain all
aspects relevant to the academic solution without going into implementation details. The
implementation details are described in the RFC draft document in appendix A. Additionally,
we describe the implementation’s academically relevant details and their realization in
infrastructure, in part V. For operational concerns such as route-building strategies, refer to
part VI.

11 Requirements for an Anonymizing Protocol
In the following sections, we first define a threat model. We then elaborate on the main
characteristics of the anonymizing protocol based on the threat model. This procedure allows
us to build a coherent model for our target protocol.

We collected an overview of all isolated characteristics of section 11.2 in table 11.1. These
properties are vital for the success of our system. We will elaborate on success or failure in
section 31.1.

ID Category Short Description

RQ1 System Undetectable Protocol nodes and their traffic should be undistinguishable from accepted nodes and traffic.

RQ2 System Equal Nodes All nodes of the system should have similar functions, capabilities, and behavior.

RQ3 System Zero Trust No trust should be imposed on any infrastructure unless it is the senders’ or the recipients’ infrastructure.

RQ4 System Unlinkability Message Requirement A message must not be linkable by an adversary to either a sender or a recipient.

RQ5 System Anonymizing A system must be able to anonymize sender and recipient at any point of the transport layer and any point within
the system unless on the senders’ or the recipients’ node.

RQ6 System Accounting The system must be able account for an entity without being linked to a real identity.

RQ7 Message Untagable The message should be untagable (neither by a sender nor an involved intermediate node).

RQ8 Message Unbugable The message should be unbugable (neither by the sender nor by an involved intermediate node).

RQ9 Message Unreplayable A message or its behavior must not be replayable.

RQ10 Operational Bootstrapping The system must allow to bootstrap from a zero-knowledge or near-zero-knowledge point and extend the network
on its own.

RQ11 Operational Algorithmic variety The system must be able to use multiple symmetric, asymmetric, and hashing algorithms to immediately fall back
to a secure algorithm for all new messages if required.

RQ12 Operational Easily handleable The system must be usable without cryptographic know-how and with popular or common tools.

RQ13 Operational Reliable From a user’s perspective, the system must act predictably. Messages handed over to the system should reach their
destination in any case.

RQ14 Operational Transparent From a user’s perspective, the system must act predictably. He can determine the state of a message at any given
point in time.

RQ15 Operational Available A user must have access to a working system and its software and updates.

RQ16 Operational Identifiable sender A recipient of a message should be able to authenticate a sender of a message beyond a simple authentification.

Table 11.1: Summary table of requirements.

11.1 Threat Model

Within this work, we look at two adversaries with differing behavior. The two adversaries are
an “observing adversary” (mainly spying) and a “censoring adversary” (actively disrupting
communication). While equal in their technical capabilities, they have different executive
and legislative environments. This difference in adversaries is essential as the usage of our

56 CHAPTER 11. REQUIREMENTS FOR AN ANONYMIZING PROTOCOL

system differs in these two environments. We assume that one of these adversaries is present
within any jurisdiction.

We refer to “jurisdiction” as a geographical area where a set of legal rules created by a single
actor or a group of actors apply. These actors have executive capabilities (e.g., police, army,
or secret service) to enforce this legal rule set.

We assume for our protocol that adversaries are state-sponsored actors or players of large
organizations. Furthermore, we assume that these actors have high funding and elaborated
capabilities either themselves or within reach of their sponsor. Actors may join forces with
other actors as allies. However, achieving more than 50% on a world scale is excluded from
our model. We always assume one or more actors with disjoint interests covering half of the
network or more.

We assume the following goals for an adversary:

• An adversary may want to disrupt non-authorized communication.

• An adversary may wish to read any information passing through portions of the Internet.

• An adversary may wish to build and conserve information about individuals or groups
of individuals of any aspect of their life.

To achieve these goals, we assume the following properties of our adversary:

• An adversary has elaborated technical know-how to attack any infrastructure. This
attack may cover any attack favoring his goals, starting with exploiting popular software
weaknesses (e.g., buffer overflows or zero-day exploits) down to simple or elaborated
(D)DoS attacks.

• An adversary may monitor traffic at any location in public networks within a jurisdiction.

• An adversary may freely modify routing information within a jurisdiction.

• An adversary may freely modify even cryptographically weak secured data where a
single or a limited number of entities grant proof of authenticity or privacy.

• An adversary may inject or modify any data on the network of a jurisdiction.

• An adversary may create their nodes in a network. He may furthermore monitor their
behavior and data flow without limitation.

• An adversary may have similar access to resources as within its jurisdiction in a limited
number of other jurisdictions.

• An adversary may force a limited number of other non-allied nodes to expose their data
to him. For this assumption, we explicitly excluded actors with disjoint interests.

As adversaries have different capabilities and goals, we should classify them among these
boundaries as well. We therefore split up the adversaries into the following subclasses:

• A censoring adversary

• An observing adversary

This adversary describes a powerful state-sponsored actor with very high but not unlimited
powers. He serves us as a worst-case adversary.

57

11.1.1 Observing Adversaries

This adversary behaves like a traditional spy. He collects and classifies information while
typically hiding his activities. The adversary only observes traffic and tries to extract data
from the system.

Unlike the case of a censoring adversary, we imply that in most of the cases, no restrictions
apply for the use of anonymizing technology from a jurisdictional point of view. If restrictions
apply, then such an adversary should be classified as a censoring adversary, as the technology
is “censored.” Such a classification must be carried out in this case, regardless of whether
the adversary only tries to collect information or not.

11.1.2 Censoring Adversaries

The primary goal of this adversary is censoring messages and opinions not within his
interests. He does this regardless of whether the activities of censorship may be observed or
not. Therefore, this adversary does not necessarily cloak his activities and typically classifies
censorship circumventing actions as illegal.

In such environments k-anonymity, as specified in [3], may not be sufficient for such an
adversary. Instead, the MessageVortex system must hide all activities from such an adversary.

11.1.3 Realism of the Assumed Adversaries

The adversaries defined above are not realistic but “worst-case assumptions”. An adversary
may monitor certain spots within a network. Such spots are typically either jurisdictional
borders or neuralgic points within a jurisdiction, such as the central router of an Internet
service provider (ISP). However, it is not realistic that an adversary can tap any point of a
network at a jurisdiction scale. Such tapping would require almost infinite bandwidth and
unlimited access.

Accessing cryptographically weak protected data is possible. However, accessing or modifying
such data typically requires a high amount of calculation resources. Such resources may be
available for a single case, but they typically do not scale if we assume high protocol usage,

Modifying network traffic would require even higher evolved capabilities as such modification
requires tapping of a network and the capability to actively modify network traffic. Such
modification is in practice almost always limited to a broadcast domain. This limitation
typically means that all devices within a broadcast domain receive the same messages except
if we direct the message to a single device. In our model, we state that the traffic may
be freely modified at any point within the jurisdiction. This assumption is not realistic
underlying today’s common network technologies. Furthermore, it is not realistic that a
state-sponsored actor will carry out a DDoS attack against an entity within a jurisdiction,
as simply blocking traffic would be far more effective and less resource binding. However,
a DDoS attack may be a good solution when disrupting services within a jurisdiction not
cooperating with the adversary’s goals.

However, an adversary may have a limited number of accesses to the network with exactly
these capabilities. As we cannot define or limit the number of access points, our defined
adversaries reflect a worst-case assumption that may not be surpassed. Therefore, our adver-
saries, while not realistic, reflect a state where, if our protocol withstands such adversaries,

58 CHAPTER 11. REQUIREMENTS FOR AN ANONYMIZING PROTOCOL

it may be considered safe.

11.2 Required Properties for Our Unobservable Protocol

In this section, we collect the required properties for our system. We first list a property and
then explain why it is essential.

11.2.1 Required System Properties

RQ1 (Undetectable): Protocol nodes and their traffic should be undistinguishable from
accepted nodes and traffic.

Users are unable to limit the route of network packets through named jurisdictions. Therefore,
we must protect users of MessageVortex from being subject to legal prosecution in any
jurisdiction. All these users need to be anonymous when sending or receiving messages. This
limitation applies not only to their communication but also to the usage of anonymization
technology. Unfortunately, most transport protocols (in fact, all of the common ones such
as SMTP, SMS, XMPP, IP, or messengers) use a globally unique identifier for senders and
recipients. These addresses are readable by any party capable of reading the packets (mainly
the routing nodes). This identification contradicts anonymity.

In the threat model in section 11.1, we defined the adversary as someone with superior access
to the network and its infrastructure. Such an adversary might attack a message flow in
several ways:

• Identifying the sender.

• Identifying the recipient.

• Identifying other involved parties (e.g.f, routers).

• Reading messages passed or extract meta information.

• Disrupting or modifying communication fully or partially. This may or may not include
the possible identification of the traffic.

If users need to stay anonymous, they must protect their traffic from influences outside the
system. As we are unable to protect data from modification, we must hide the traffic of our
application. In such a scenario, an adversary cannot block our traffic unless he is willing to
disrupt communication entirely by disrupting the transport protocol’s communication.

RQ2 (equal nodes): All nodes of the system should have similar functions, capabilities, and
behavior.

This requirement protects all involved parties from possible legal prosecution. As we cannot
introduce our infrastructure or protocols, any categorization from outside or inside would
lead to an information leak.

59

We have to assume that all actions taken by a potential adversary are not subject to legal
prosecution. This assumption is based on the fact that an adversary trying to establish
censorship may be part of the jurisdiction’s government. We may safely assume that there
are legal exceptions in some jurisdictions for such entities. Having such legal means enables
an adversary to introduce legally spying nodes into our system.

To withstand an adversary outlined in section 11.1, the messages sent even within the system
must be unidentifiable by meta-information or content. “Meta-information” may refer to any
information including, but not limited to, frequency, timing, message size, sender, protocol,
ports, or recipient. If we want to guarantee that a node is not identifiable as an endpoint
of a message, all involved nodes must carry out equivalent operations. As soon as we have
differences between routing nodes and endpoints, we can identify participating persons at
entry or exit nodes.

If we want a user’s traffic to remain indistinguishable from traffic generated from routing
nodes, all traffic must have the same properties. This applies not only after “entering the
system” but at any time. As a result, only an infrastructure-less approach may be used as a
consequence. A hybrid or server-based approach requires infrastructure to be placed within
the Internet. Jurisdictions with a censoring adversary may place focus on such systems and
identify and prosecute their owners.

Furthermore, it must be impossible for an observing adversary to identify message endpoints.
All nodes must look equal from the outside in terms of traffic, as well as by offered functions
and behavior. The term “Equal nodes” does not necessarily mean that nodes must be
indistinguishable. It merely means that given the functions, capabilities and behavior of
a node, no further information can be deduced and no differentiation in function may be
achieved.

RQ3 (zero trust): No trust should be imposed on any infrastructure unless it is the senders’ or
the recipients’ infrastructure.

The requirements above protect from an adversary outside the system. From the inside, an
adversary may have access to much more information. An adversary will likely create nodes
in an open system. As a consequence, trust in infrastructure is minimal.

In our model, we will be suspicious of the infrastructure. As every infrastructure node
learns from each transaction (e.g., the usage of the network or size of messages), we have
to minimize or ideally eradicate such information gains. The main problem is that we are
unable to hide peer senders or recipients when routing messages. In jurisdictions where such
infrastructure usage is illegal, we need to protect the presence of our routing messages from
any distrusted party. Such hiding concludes that we need to be able to control which nodes
are involved when sending messages. We refer to this concept as controllable trust.

In terms of the trust, we conclude that:

1. We trust in infrastructure because it is under full control of either the sender or the
recipient. If we are unable to trust these infrastructures, information may be leaked
without problem. Thus, trusting these infrastructures is inevitable.

2. We should not trust any other infrastructures, as an adversary can misuse data passing
through.

60 CHAPTER 11. REQUIREMENTS FOR AN ANONYMIZING PROTOCOL

RQ4 (unlinkability): A message must not be linkable by an adversary to either a sender or a
recipient.

We need a requirement guaranteeing the unlinkability between the sender and recipient
from an adversary’s point of view. This prevents building social graphs and narrowing down
groups of individuals.

RQ5 (anonymization): A system must anonymize the sender and recipient at any point of the
transport layer and at any point within the system unless on the senders’ or the recipients’ node.

Unobservability requires, according to [124], an item of interest (IoI) to be undetectable
from an uninvolved entity and anonymous for the involved entities. We therefore require
anonymization as a property.

As a result of the architecture of today’s common networks, the anonymization of a sender or
a receiver is not simple. A relay may allow at least the anonymization of the original sender
given the trust into such an infrastructure. By combining it with encryption, we may even
achieve a simple form of a sender and receiver pseudonymity, even for a weak outside observer.
This has been accomplished in Cypherpunk remailers (see section 10.2). If we cascade more
relay-like infrastructures and combine them with cryptography, we may achieve sender
and receiver anonymity. When we then introduce anonymous remailing endpoints, we may
additionally achieve both simultaneously. These are the standard approaches in remailers
and mixes. We have seen real-world attacks on such systems in the past, and some were
successful (e.g., [93]).

[124] defines anonymity as:

“ Anonymity of a subject means that the subject is not identifiable within a set of
subjects, the anonymity set. ”If we apply our threat model, we find that we require all users to be anonymous, regardless

of whether a specific user is sending messages or not. Otherwise, such a user may become
subject to legal prosecution.

RQ6 (accounting): The system must be able to account for an entity without being linked to a
real identity.

As a system may be flooded with messages, we need means to control the burden of pro-
cessed messages. To separate message flows, we need means to control them by identity.
Unlike other protocols, we have no identifier as we work based on the previous requirement
anonymity. We will however require some type of accounting to keep adversaries from
flooding our system.

11.2.2 Message Requirements

From the message point-of-view, we need to conserve privacy, which has been elaborated on
in the previous section.

RQ7 (untagable): The message should be untagable (neither by a sender nor by an involved
intermediate node).

61

To protect a message from being followed or observed, a message requires certain properties.
First, a message should not have, by design, any properties which can be observed when
passing through the system. Any node should remove all parts which were under control of
the previous node.

RQ3 (zero trust) implies that a node may try to introduce such features into the message.
As we cannot keep a node from doing so, we can define that such tags must be removed by
the next node. This may only be done if any node apart from the sender and recipient node
does not have access to the message being transported or the message is protected from
modification.

RQ8 (unbugable): The message should be unbugable (neither by the sender nor by an involved
intermediate node).

Another way of breaking anonymity is that instead of following a message through the
system, an adversary may modify (bug) it so that the receiving or any intermediate node
leaks its presence. In traditional messaging such bugging is carried out by introducing
remotely hosted data or by introducing revocable certificate operations into the message
stream and then observing the VA of a PKI for respective OCSP calls or CRL accesses. DNS
or similar information lookups may be used as well. Our protocol handling must not depend
on such external lookup or download mechanisms to ensure that bugging is not possible.

This property applies not only to the message content itself but also to any routing node
processing. All operations carried out need to be standalone and should not be queryable or
detectable from an outside observer even if he is able to manipulate the message content.

RQ9 (unreplayable): A message or its behavior must not be replayable.

In a generic sense, a node may also replay a message to highlight a messages property (e.g.,
the path or size), which may lead to the discovery of such meta-information.

11.2.3 Operational Requirements

In order to be realistically operated, our system needs to fulfill some additional requirements.

RQ10 (bootstrapping): The system must allow to bootstrap from a zero-knowledge or near-
zero-knowledge point and extend the network on its own. Until here, we described a system
that is not centrally controlled. If not relying on broadcast domains, which is not feasible
on a global scale, each node needs to know other nodes that may be contacted for routing
purposes. We refer to the initial process of collecting routing nodes as bootstrapping.

This bootstrapping is needed for users to extend their network at first to a reasonable
anonymity set assuming an adversary inside the system. At the same time, the bootstrapping
mechanism is a great danger as it allows an adversary to harvest nodes. As a result, each
node must be able to control by whom a node is discoverable.

RQ11 (algorithmic variety): The system must be able to use multiple symmetric, asymmetric,
and hashing algorithms to immediately fall back to a secure algorithm for all new messages if
required.

62 CHAPTER 11. REQUIREMENTS FOR AN ANONYMIZING PROTOCOL

Weaknesses in algorithms are discovered quite commonly. We may therefore not rely on a
single algorithm. Instead, we must create a protocol supporting processing alternatives for
algorithms. This includes crypto agility, as described in [21].

RQ12 (easy handleable): The system must be usable without cryptographic know-how and
with popular or common tools.

Academic systems are usually not known for focusing on user-friendliness. Users, on the
other hand, are not known for their willingness to sacrifice functionality or usability for
security. If we want our system to be secure, we require many users to generate a sufficient
level of decoy traffic. This would lower the bar for bootstrapping and increase the size of
anonymity sets. We therefore conclude that the system must be easy to handle for a user.
Usually, this would be a decision related to a GUI or an end-user application but not to a
system. However, if we want our system to be easy to handle, we need to take this into
account as a requirement.

RQ13 (reliable): From a user’s perspective, the system must act in a predictable manner.
Messages handed over to the system should reach their destination in any case.

Any message-sending protocol needs to be reliable in its functionality. If the means of
message transport are unreliable, users tend to use different means for communication [172].

RQ14 (transparent): From a user’s perspective, the system must act in a predictable manner.
The user is able to determine the state of a message at any given point in time.

Transparent behavior is a prerequisite for reliability. If something generates acertain behavior,
but a user is unable to determine the reason for it (i.e., if a user expects a different behavior),
he would usually assume a malfunction. Therefore, “reliable” means not only stable by its
behavior. It also means that the system has to be diagnosable. A user’s perception will not
be “reliable” if he is not able to determine causes for differences in observed and expected
behavior (e.g., [117]).

RQ15 (available): A user must have access to a working system and its software and updates.

If a user should be able to use the system, he needs access to other nodes and the required
software, as well as its updates. This has to be considered even in an environment with a
censoring adversary which means that the system needs to be available.

Availability, in this specific context, may have two differing meanings. A system is available
if. . .

1. a sender and a recipient have (or may have) the means of using it.

2. the infrastructure provides the service, as opposed to: “is running in a degraded or
dysfunctional state and, therefore, possibly unable to provide the service.”

RQ16 (identifiable sender): A recipient of a message should be able to authenticate a sender
of a message beyond a simple authentification.

63

A messaging system offering unlinkability may offer sender anonymity from a recipient’s
perspective. If so, a sender should be identifiable in such a way that a classification of senders
is possible for a legitimate recipient and impersonation is not achievable. It is important to
understand that an identifiable sender does not necessarily mean that users can identify
a sender as a specific party. It only means that two senders may be identified as the same
sender.

We did not consider efficiency as a requirement, as our goal is to achieve anonymity under
harsh conditions.

12 Rationale
In this chapter, we set the course for our system. We explain why we built the protocol the
way it is. We elaborate on our decisions and explain why the system is not built differently.

The system we describe is a four-layered system (transport, blending, routing, and accounting
layer) in which each layer fulfills a specific duty. The transport layer is equal to an unmodified,
common Internet data transport protocol. The blending layer inserts and extracts our protocol
messages into the transport layer. The routing layer disassembles and reassembles the
messages received and applies specially crafted operations, and the accounting layer tracks
the quotas and protects the system’s resources. The three MessageVortex layers (all layers
except “transport”) run on common Internet end-user devices such as mobile phones or
tablets.

12.1 System Design and Infrastructure

All anonymity systems listed in part III have in common that they rely on dedicated servers
providing an anonymity-related service. Such specialized servers make operators or owners
of such servers vulnerable in an environment where a censoring adversary (as described in
section 11.1) exists. Therefore, our approach should be different. Instead of creating our
own protocol, we describe a system where we use pre-existing standard servers without
modification for our purpose. If we succeed in ivisibly piggybacking such a protocol, we may
inherit the regular usage of this infrastructure as decoy traffic. Piggybacking and mimicking
protocols is not new. Protocols such as Skypemorph [113] or pluggable transports for Tor
(e.g., Meek, FTE, or OBFS4) use this technology successfully for censorship circumvention.

Piggybacking is executed in a protocol-agnostic manner. On the protocol level, this requires
that we separate the embedding of messages into the transport protocol from the rest of
the system. This makes the system even more difficult to observe as routing graphs taking
multiple protocols into account increase the complexity exponentially through their different
properties.

Important properties of piggybacking are mainly:

• . . . the importance or significance of the transport protocol.
The more important the transport protocol, the higher the barrier to censor the entire
protocol.

• . . . the traffic load.
The higher the load created by the transport protocol for analyzing the data, the more
difficult it is to uncover messages.

64 CHAPTER 12. RATIONALE

• . . . the quality of the piggybacking
The harder it is to identify a single message as part of the protocol or not, the harder it
is to establish censorship.

The content of the message in the transport layer protocol is provided by the routing node
and not by anyone or anything else. This restriction is based on the fact that if we allow
anyone else except the routing node itself to control visible aspects of the transport layer
message, the system could be misused for sending transport layer messages. To give an
example: Such a system could be misused for blackmailing a user not participating in the
system. We simply create a message obfuscating the source and then exit the system by
embedding the true blackmailing message.

As we rely on third-party infrastructure with our approach, we have to ensure that when
designing our approach not to violate requirement RQ3 (zero trust). For obvious reasons, a
direct connection between the sender and recipient via any named transport protocol would
violate the requirement RQ4 (unlinkability). A single intermediate node would minimally
imply trust in this node and its anonymization capabilities, which is not acceptable due
to the requirement RQ3 (zero trust). When using multiple nodes, other anonymization
protocols typically use three to five intermediate nodes due to their arguing. Such protocols
typically have at least three anonymization nodes for obvious reasons and sometimes an
entry and exit node summing up to five nodes. This implies that the routing of our protocol
is required. As we have a RQ3 (zero trust) policy, decisions for routing may no longer take
place on the routing node but must be dictated externally. Some protocols (such as a typical
Crowds-based system) have weaknesses as each node may decide on the subsequent node
and choose one in their favor.

For routing, we will use end-user devices. This decision is further backed by the requirement
RQ2 (equal nodes). It however opposes the requirement of RQ13 (reliable), as such system
participants are likely to be unreliable due to missing network connectivity, device failure due
to drained batteries, or simply because they no longer participate in a network. To counter
this, we implement measures on the message level.

12.2 Message and Routing

One of the biggest weaknesses of all protocols is the information leakage they have by design
and the inability to restrict access to their functionality. We will build the messages with the
following design guidelines:

• No routing controlled content shall survive a hop.
For us, this means that by design a message is received and dismantled. Any content
visible or manipulatable by the previous node must be removed. Only new content or
content inaccessible to the previous node may be used to build new messages. Following
this criterion, we automatically fulfill the requirement RQ7 (untagable).

• A routing node may efficiently identify a message sender.
The sender must be efficiently identifiable. At first sight, this requirement is non-fitting
as it opposes heavily to RQ5 (anonymization) and RQ4 (unlinkability). On the other
hand, not providing these means makes it next to impossible to create a system that
may not be misused and flooded. As the identification is pseudonymous, it must be
short-lived, and multiple identities of the same sender must not be linked to each other.

65

We will refer to this identity as an ephemeral ID (eID). This eID is handled in such a way
that no complete decoding of the message is required to authorize the user. Instead, we
build a message in such a way that tamper-proof, small-sized parts of the message are
decoded first, and possibly bloated message content may be decoded after it is clear
that the content is acceptable. If we assign “costs” to the creation of eIDs, it effectively
protects the system from flooding.

• The routing operations must not leak more information than the next hop.
We will apply a transformation on each routing hop to the message. This prevents
following the message throughout the system. In most of the systems, messages are
mainly disassembled and reassembled, or onionized. Additionally, the traffic of our
system is cloaked in mimicking traffic, making it next to impossible for an outside
observer to identify message flows. In other systems however, the node generating
decoy or mimicking traffic is well aware of the true message flow. In our system,
instead of mimicking traffic, we add redundancy information (or remove it). By doing
so, a routing node no longer has insight into which part of the traffic is relevant to
the message and which part is not. Furthermore, we may introduce the possibility
of distributing the message content throughout multiple paths in such a way that
each path has insufficient content to rebuild the message. In fact, depending on the
complementing missing message, any content received or sent by a node may be valid
in our system.

• Messages are protected from being replayed.
In former systems, message paths were highlighted by injecting additional information.
Our system is already protected from such injections by the eID concept, which identifies
the sender. There are however other means for highlighting traffic. An adversary may
either inject message payload (corrupting the message flow) or replay the message.
While we cannot keep anyone from violating the rules, we may at least implement replay
protection. Furthermore, we may later discover that we are able to identify willingly
induced or size mismatching content.

• Messages in the routing system are “store and forward.”
All synchronous routing systems have in common that message observation is relatively
easy for an outside or inside observer with a sufficient number of observation points
unless mimicking routes are used. This is why we allow the message to be stored and
picked up or sent at a later stage.

• Use the Reed–Solomon-function as our main routing operation.
Originally, [128] introduced a system allowing the use of polynomes to create error-
correcting codes. In [27] Chaum, Crépeau, and Damgard, have shown that the codes
are suitable for distributing data assuming enough parties are honest and not mal-
functioning. Unlike Chaum, Crépeau, and Damgard proposition, we do not use the
Reed–Solomon-function to achieve anonymity or privacy. Instead, we use it for decoy
traffic generation. We split a message into multiple parts at several points by adding
redundancy information while routing and assembling it again on the target node. By
doing so, we achieve two vital things. First, we introduce the possibility of recover-
ing errors due to misbehaving nodes, and secondly, the real traffic can no longer be
differentiated from decoy traffic.

• MessageVortex must provide a variety of algorithms and operations to build a message.
As all systems and algorithms applied to the system may be weakened or fail, a system

66 CHAPTER 12. RATIONALE

needs to have the possibility to choose from multiple algorithms, protocols, and infras-
tructures. This choice should be made by a trustworthy system that restricts us from
either the sender or the receiving system. The German Federal Office for Information
Security (BSI) makes recommendations in [21] for systems and protocols, which we
intend to follow.

The main text can be condensed to the following recommendations:

– A protocol or system should be crypto agile.

– A protocol or system should use signatures for updates.

– The document furthermore recommends using symmetrical keys with a key length
of 128 bit or more.

– The document recommends a combination of large, long-term keys and small,
short-term keys.

– The document recommends using a combination of multiple independent algo-
rithms in cascaded forms so that if one algorithm fails, the other one is still able
to protect the data.

– For key exchange, BSI recommends lattice-based cryptography.

12.3 Summarizing Chosen Approaches forMessageVor-
tex

In this section, we made the following decisions for MessageVortex :

• Piggybacks common protocols.

• Does not require specialized infrastructure within the Internet.

• No proprietary systems on the Internet.

• Runs on commodity hardware.

• Sends messages in an asynchronous mode.

• Creates unidentifiable decoy traffic by using a Reed–Solomon-function.

• Has no strict message size and strictly avoids increasing or decreasing sizes in any type
of message or message part.

• Does not enforce specific attributes such as transport protocol, message size, message
timing, or providers.

• Run offers routing operations instead of traditional mixing and recombination methods.

• Offers a choice of algorithms when routing.

• Offers short-lived pseudonyms to enable the identification of the original sender.

67

The protocol is a four-layer protocol, as shown in fig. 13.2 on page 71. We communicate with
standard protocols, which we refer to as the transport layer. While included in the message
flow, they do not form a part of the VortexNode. The VortexNode itself consists of the three
layers “Blending”, “Routing”, and “Accounting”.

The blending layer is the bridging part linking a transport layer to the VortexNode. It injects
and extracts messages from the transport layer and passes the extracted messages to the
routing layer. It may be either used as a protocol bridge (e.g., in the case of XMPP) or act as a
sophisticated router (e.g., in the case of email protocols, where mails are fetched or received
on push event via POP3 or IMAP while sending messages using SMTP).

The routing layer receives unified standard messages from the blending layer, processes them,
possibly extracts messages for local delivery, and passes subsequently created messages to
the blending layer.

This design is definitely implementable on a consumer device. On the other hand, it is also
scalable and suitable for a clustered environment. Blending can be achieved in a stateless
manner, is even suitable for serverless computing, and thus largely scalable. Routing may be
implemented either with horizontal partitioning along with a set of eIDs or on a serverless
base with a unified storage in the background. The accounting layer acts as a controller and
may be implemented as well as a stateless service with a minimal NOSQL-storage for all
eIDs.

13 Protocol
MessageVortex is a protocol piggybacking standard transport protocols similar to S/MIME [45]
or PGP [59]. Unlike these protocols, we require the capability to keep the presence of our
messages secret. The message itself should only be visible to an intended node.MessageVortex
itself is agnostic to the transport, but we do require appropriate blending to hide credibly
within the transport protocol. The information processed on a node and its associated
meta-information should not leak any information about the processed message.

Our system sends so-called VortexMessages. These messages are hidden within a transport
protocol (e.g., SMTP or XMPP) with a blending mechanism (e.g., the steganographic algo-
rithm F5) and extracted by a blending layer. The extracted VortexMessage is an encrypted,
structureless blob, which is handed over to a routing layer. The VortexMessage itself contains
a header block, a routing block, and possibly some payload blocks. The header block contains
all the information required to protect the system. The routing block contains instructions
(so-called “operations”) on how the payload blocks are processed and where to send the
resulting blocks. Those operations are one of the keys as information leakage occurs in this
step in most of the systems. We therefore crafted all operations very carefully to keep as
much information secret as possible. These operations are key to the system as they allow
us to increase and decrease the size of a message without revealing what part of the data is
a decoy and what is not.

A payload may either be kept by the system for later processing with other messages,
processed (possibly with different) payload blocks, or displayed to the “local user” as a
message.

The general idea of the protocol is to form a network from nodes that mix and route messages
between the sender and receiver. A routing block builder (RBB), which is typically identical
to the sender, has full control over almost all attributes of the message, and nodes are unable
to learn anything from the message while routing. Each user has a node, and there may be

68 CHAPTER 13. PROTOCOL

additional nodes (public routing nodes) without a user connected to it.

The message is either onion-like encrypted, split into parts and remerged, or blown up with
redundancy information.

This behavior results in a mixing-like a system with a decoy generation in which even decoy
generating nodes are unable to differentiate between real traffic and decoy as all blocks
always contain parts of the message. Routing decisions are controlled by the builder of the
routing block, and redundancy is possible and controlled by the routing block builder to
make the system more stable.

In the following sections, we describe this protocol in detail. First, we build a terminology
implicitly used in the previous chapters. Then we describe the key concepts and techniques
of the protocol without in-depth analysis or reasoning. The implementation and operational
aspects are discussed in part V and part VI.

13.1 Protocol Terminology

For our protocol, we use the following terms:

• sender: The user or process originally composing the message. In contrast to the sender,
the immediate sender is the node sending the message to the current node. It may or
may not be identical to the sender.

• recipient: The user or process destined to receive the message in the end.

• user: Any entity, running a MessageVortex node.

• router: Any node processing the message. Please note that all VortexNodes are routers.
This includes the senders’ and recipients’ node.

• message: The “real content” to be transferred from the sender to the recipient.

• VortexMessage: The encoded message passed from one node to another. The Vor-
texMessage is considered before any embedding takes place. If embedded, we refer to
such a message as “embedded VortexMessage”.

• payload: Any data transported in a VortexMessage between routers with exception
to the routing and header block, regardless of the meaningfulness or relevance to the
VortexMessage.

• decoy traffic: Any payload transported between routers that has no relevance to the
message at the final destination.

• identity: A tuple of a routable address and a public key. This tuple is a long-living tuple
but may be exchanged from time to time. An Identity is always assigned to a node, but
one node may have multiple identities.

• eID: An identity created on any node with a limited lifetime and anyone possessing the
private key (proven by encrypting with it) is accepted as representative of that identity.
An eID has a workspace associated to it. Please note that an eID is not identical to an ID
which is a numerical identifier for a payload block storage location within a workspace.

• Routing Block Builder (RBB): An entity, which builds a routing block. Typically
identical to either the sender or recipient.

69

13.2 Key Components

The following sections describe some key components of the system. Understanding them is
essential for the understanding of the protocol as a whole.

We first describe a single node and its identity. This node is always equivalent to a potential
sender, recipient, or router.

We then introduce the concept of workspaces and ephemeral identities (eIDs). These concepts
are essential for the routing and accounting layers. They dictate memory and storage
requirements and lay a foundation for the routing layer.

Understanding the protocol layers’ inner workings is essential to the understanding of the
project as a whole. We emphasize their main function and their inner workings without
going into implementation details. These details are further discussed in part V. We mainly
focus on the data and the high-level processing within these layers.

13.2.1 Nodes and Their Identities

We refer to a VortexNode (node) as a system run by an individual containing a software
processing VortexMessages. Each node is connected to a transport layer protocol service (e.g.,
an IMAPv4 server as an endpoint for email or an XMPP server). A node is not a server but a
device connected to a regular, unmodified transport service provider. Such transport services
may be an SMTP/IMAPv4/POP3 account, an XMPP account, or a similar transport protocol
account.

Each node o has at least one identity reflected by an asymmetric key pair Khosto . Any node p
communicating with node o must have the public key K1

hosto
of the node.

A node requires the key K1
hosto

to encrypt a message for node o. This key know-how enables
environments with censoring adversaries to withstand probing attacks, because without the
knowledge of such keys, no reply from a node is received. The transport endpoint itself is
not a secret. The usage as VortexNodehowever is kept secret as long as the key is unknown.

The protocol itself has the possibility to answer cleartext requests. So-called “public nodes”
(see section 21.3.2) make use of such messages. They are, however, an exception. In general,
all VortexMessages are encrypted.

13.2.2 Workspaces and Ephemeral Identities

We dumped the approach for a system with a global, unified storage for all message process-
ing. Such a design would allow an adversary to flood our storage. Instead, we introduced
temporary storages suitable for a set of transactions belonging to a single identity or a limited
set of collaborating entities. In our system, every transaction on a node is assigned to an
ephemeral identity (eID). An eID has a limited lifetime and is represented by an asymmetric
key pair and has to be created on each VortexNode taking part in message processing. Each
eID has a storage assigned to which we refer as “workspace”. A simplified outline of a
workspace is shown in fig. 13.1.

An eID is unique on every host and created on each VortexNode by the routing block builder
(RBB). To create an eID, an RBB first sends a message with only a header block to the
respective VortexNode. The request contains the new identity, a reply block, and a request

70 CHAPTER 13. PROTOCOL

to create a new identity. The receiving VortexNode will then typically send a challenge
back. A challenge may be the start of a hash bit sequence (also referred to as “puzzle”). The
requester has then to resend the request with a header block. The requester must insert
additional data in such a way that the start hash in its binary form matches the bit sequence
provided. Another possibility is to request payment in a cryptocurrency. This allows us
to commercialize routers in some countries where the usage of such routers is generally
allowed.

The length of the requested bit sequence is chosen by the accounting layer at its own will.
If the request is not answered in a given time, the eID will be discarded. Analogous to
an SYN-Flood attack, an adversary may try to overwhelm a VortexNode with eID creation
requests. Such flooding will be much more costly for the adversary than for the VortexNode,
and such a node may decide to temporarily no longer accept new eID requests without
affecting already existing eIDs.

Each eID has a lifetime, a maximum number of messages to be processed, and a maximum
number of bytes to be sent assigned to it. The lifetime of an eID is typically days and maybe
up to a few months. Lifetimes may not be extended and are defined by the sender of the
request. A node may accept or decline the request if the lifetime of the request or the state
of the node does not meet its expectation. The puzzle sent in return may be a fixed value or
related to the nodes’ current state and load.

This system guarantees that a sender must invest considerable work (in terms of CPU time
required) prior to using resources of a VortexNode. A VortexNode may raise the complexity of
its puzzles when having a high load. This allows for a single user to still obtain an eID while
increasing costs for an attacker considerably raises the bar for DoS attacks. Even if someone
floods a node with new eIDs, already created eIDs are not affected as their workspace has
already been allocated.

Op Operation

Unused payload slot

Used payload slot

Routing block

Workspace

Workspace

Workspace

Op

Op

Figure 13.1: Simplified outline of a workspace in a VortexNode.

The workspace (see fig. 13.1) itself contains chunks of the messages (payload blocks) mapped
to IDs and operations. The operations transform one or more source IDs onto one or more
target IDs. Any of these payload blocks may be assigned to a subsequent message as payload
block by a routing block. An operation or a payload block share the lifetime of the respective
message header. If operations overlap in output blocks, the newest operation (arrived latest)
wins. Arriving VortexMessages map their payloads onto IDs of the respective workspace of
the eID. To allow such mapping, the first IDs are special IDs either mapping to the ID 0
(message for local delivery) or IDs 1-127 (always reflecting the current message [ingoing or

71

outgoing]).

This concept has certain disadvantages related to the expiration of eIDs. We will address
them in section 17.3.1 and 17.3.3.

13.2.3 Protocol Layers

As already introduced in section 12.3, the protocol is built on multiple software layers. The
layers are shown in fig. 13.2.

VortexNode

Accounting

Routing

Blending Blending Blending

Transport Transport Transport In Transport Out

Figure 13.2: The protocol layers.

On the logic side, the protocol is split into two parts:

1. Transport Layer
Standard Internet infrastructures provide this layer. The primary goal is to hide or blend
our protocol into regular traffic within that layer. Typical examples for such layers are
SMTP or XMPP servers.

2. Blending and subsequent layers (the Vortex infrastructure)
Any user of the Internet may provide these layers. Since these layers may be only Vortex
routing nodes or valid endpoints, the nodes may or may not be publicly known. In a
first implementation, we build this system as a standard Java application. The primary
goal is to compile it to native code afterward and run it on an SoC-like infrastructure
such as a RaspberryPi or port it to an android device.

We may further split the Vortex infrastructure layers into

(a) Blending layer
This layer receives messages from the Vortex system and creates transport layer
conformant messages and vice-versa. In an ideal case, the messages generated by
this layer are indistinguishable from any regular message traffic of the transport
layer, and the embedded message is only detectable by the receiving node.

(b) Routing layer
The routing layer disassembles and reassembles messages.

72 CHAPTER 13. PROTOCOL

(c) Accounting layer
The accounting layer has three jobs. First, it has to authorize the message process-
ing after the decryption of the header block by the blending layer. Secondly, the
accounting layer handles all header request blocks and the reply blocks. Third, it
keeps track of the accounting regarding the sent messages. Its main purpose is to
protect the system from misuse or flooding.

In total, we have four layers. The bottom-most layer consists of unmodified standard
infrastructure for transport within the Internet, and the three layers on top build a single
VortexNode. There is always one accounting and one routing layer. Blending layers exist
on a “need to have” basis. Typically, there is one blending layer per transport protocol or
transport protocol account.

13.2.4 Transport Layer

The transport layer is a standard protocol within the Internet. It is neither a MessageVortex-
specific infrastructure, nor has it been modified for the purpose. Instead, it serves the purpose
of a storing and forwarding medium. This medium solves two major problems. First, no
NAT traversal technology such as “TCP hairpins” or “hole punching” is required. Secondly,
it compensates for short outages due to regional routing problems to the end-user (e.g.,
networking problems on the Internet).

A transport layer should have some generic properties:

• Widely adopted

• Reliable

• Symmetrically built

For a more detailed description of the criteria, see section 14.5.1.

For our first tests, we used a custom transport layer, allowing us to monitor all traffic quickly,
and build structures in a very flexible way. This transport layer works locally or in a broadcast-
based network with a minimum amount of work for setup and deployment. The API we used
may however be used to support almost any kind of transport protocol.

In section 14.5, we share a short analysis going through some common protocols outlining
the strength and weaknesses of common transport protocols within the Internet.

After that, we focused on the protocols identified in the previous sections for transport:

• SMTP

• XMPP

For the prototype, we have implemented an SMTP transport agent and the respective
blending layer.

13.2.4.1 Blending Layer

The blending layer solves multiple problems:

73

• It translates the message block into a suitable format for transport
This translation includes jobs such as embedding a block as encoded text, as a binary
attachment, or hiding it within a message using steganography. Another demanding
task in this context is to create credible content for the transport message itself.

• Extracts incoming blocks
Identifying incoming messages containing a possible block and extract it from the
message.

• Does housekeeping on the storage layer of the transport protocol
Access protocols such as POP and IMAP require that messages are deleted from time
to time to stay below the sizing quotas of an account. Managing this transport layer
account is the job of the blending layer.

There is no specification on the housekeeping of the blending layer, as this is specific to
the requirements of the account owner. We do, however, recommend handling messages
precisely as if they were on an account handled by a human unless the receiving account
appears to be a machine account.

The blending is currently achieved by merging the VortexMessage using either F5 as described
in [168] or by plain blending, which is a binary embedding. For both embeddings we currently
need jpeg images included in the SMTP message.

Processing a message received from the transport layer
We define the blending layer to work as follows when receiving messages:

1. Logging arrival time on the transport layer.

2. Extracting possible VortexMessage.

3. Applying decryption on a suspected header block of VortexMessage.

4. Identifying the header block as valid by querying the accounting layer.

5. Extracting and decrypt subsequent blocks.

6. Passing extracted blocks and information to the routing layer.

A more accurate and precise outline may be found in section 17.2.2.

Processing a message received from the routing layer
We define the blending layer to work as follows for sending messages:

1. Assembling message as passed on by the routing layer.

2. Using the blending method specified in the routing block, build an empty message.

3. Creating a message decoy content.

4. Sending the message to the appropriate recipient using the transport layer protocol.

For more details regarding the exact sequence and implementation decisions, refer to sec-
tion 17.2.3.

74 CHAPTER 13. PROTOCOL

Credible content creation for the transport layer
One of the most demanding tasks of the blending layer is to create transport protocol
messages. In [76], Houmansadr, Brubaker, and Shmatikov expresses that it is easy for a
human to determine decoy traffic as the content is easily identifiable as generated content.
While this may be true, there is a possibility here to generate “human-like” data traffic
to a certain extent. For the blending layer, it is not necessarily required to mimic human
messages. Instead, the blending layer may generate messages such as password recovery
messages, monitoring messages, and even UBM-like the content. All these messages have
required properties in common. First, all of them are machine-generated messages which
are modified quite often. All of these messages are known to be sent and possibly adapted
individually.

For the blending itself, we required a steganographic algorithm. After reviewing the options,
we decided on F5 [168] as a steganographic algorithm, which attracted many researchers.
The original F5 implementation had a detectable issue with artifacts [20] caused by the
recompression of the image. This issue occurred only due to a problem in the reference
implementation, and the researchers have provided a corrected reference implementation
without the weakness.

We searched for other steganographic algorithms but were unable to find any other suitable
algorithm apart from F5, which fulfilled the following set of criteria:

• Unbroken.

• Researched.

• Suitable for embedding in lossy-compressed, common image formats (e.g., jpeg).

• An implementation or a well-specified algorithm exists.

We decided to keep our plain embedding algorithm in the implementation. It already requires
an in-depth analysis or a human to detect embedding, and the message itself is, even if
detected, well-protected. Its biggest strength is its efficiency. This algorithm is, however, only
suitable for public nodes matching up to an observing adversary (as defined in section 11.1).
It must not be used in environments where a censoring adversary is suspected.

When using F5, jpeg images are required. Imagery requires to be at least eight times the size
of the message embedded. Unlike other approaches harvesting random pics or obtaining
them from a local repository, we recommend using machine-generated images such as
rendered content. We recognize that custom Gravatars, router, and usage graphs of services
or render services are suitable imagery material for our purpose. The message content would
obviously be machine-generated content and not be suspect. This would effectively render
the Dead Parrot problem as described in [76] ineffective.

13.2.4.2 Routing Layer

A routing layer needs to receive all payload and routing blocks and process them (for an
exact outline of the routing block, see section 13.2.5). These blocks are stored in a suitable
list within the workspace of the eID identified by the header block.

We refer to the message processing as “routing” as it is more than just forwarding. While
processing a message we may split, or reassemble a message and process complex operations

75

on parts of it such as adding a redundancy operation or operations such as “onion routing”
or “garlic routing”.

Within the routing block, we find a set of instructions in addition to the next VortexNodes’
information and the encrypted routing blocks for the messages to be assembled. A simplified
representation of a routing block is shown in fig. 13.3.

ROUTINGo =⟨[ROUTINGCOMBO]*, replyBlock, mapping*⟩ (13.1)

ROUTINGCOMBO =⟨processIntervall, KpeerN+1, recipient, nextMP, nextHP,
nextHEADER, nextROUTING, assemblyInstructions⟩ (13.2)

PL =⟨payload octets⟩* (13.3)

nextMP =EK1
hosto+1

(︁
Kpeero+1

)︁
(13.4)

nextHP =EK1
hosto+1

(︀
Ksendero+1

)︀
(13.5)

nextHEADER =EKsendero (HEADERo+1) (13.6)

nextROUTING =EKsendero (ROUTINGo+1) (13.7)

operations =⟨list of operations⟩ (13.8)

assembyInstructions =⟨blendingIn f ormation, nextHop, ⟨mapping operation+⟩⟩ (13.9)

Figure 13.3: Simplified representation of a routing block.

The routing of a message is simple. A workspace of an eID contains routing blocks and
payload blocks. A routing block has an active time window defined in the header block.
Anytime during that time window, a routing layer of a node processes the routing instructions
contained in the assembly operations of the routing block. If successful, the message will be
sent using the specified blending layer and target address.

The routing layer stores the main information assigned to the operation of routing messages.
The following data has to be kept for routing within the eIDs workspace:

• Build[]⟨expiry, buildOperation⟩
The array Build[] is a list of building instructions for a message. The server may decide
at any time to reject a list exceeding the required size or long-living message. Thus, the
server may control the size of this list as well. However, controlling the size of this list
will most likely result in the non-delivery of a message.

The buildOperation is extracted by enumerating operation* while expiry is the upper
bound of the processIntervall.

• Payload[]⟨expiry, payload, id⟩
The array Payload[] reflects a list of all currently active payloads. Servers may decide
to store derivatives of payloads. However, as derived payloads inherit their expiration
from the generating operation, such behavior may be safely omitted and operations
executed if their result is required.

• Route[]⟨processIntervall, blendingIn f ormation, nextHop, nextMP, nextHP,
nextHeader, nextRouting, Kpeero+1 , assemblyInstructions⟩
The list of routing information triggers processing. At a randomly chosen time defined
in the processIntervall, a message is composed. The message is assembled by ⟨nextMP,

76 CHAPTER 13. PROTOCOL

EKpeero+1
⟨nextHP, nextHEADER, nextROUTING, payload*⟩⟩. The payloads are

created with the help of the arrays build[] and payload[], and as soon as the message
is authorized by accounting and passed to the blending layer, the entry in this list is
discarded.

The routing system created by this layer may be seen as a source routing system if one is
willing to ignore that the sender of a message and the builder of the routing information are
not equal.

13.2.4.3 Accounting Layer

The accounting layer tracks all information required and assigned to ephemeral identities
(eID). It is queried by the blending and the routing layer for the authorization of the operations.
The accounting layer manages the following tuples of information:

• eID[]⟨expiry, pubKey, mesgsLe f t, bytesLe f t⟩
The eID tuple is the longest living tuple. It reflects an ephemeral identity and exists as
long as the current identity is valid. All other tuples are short-lived lists. As the server
decides whether to accept new identities or not, the size of this data is controllable.

• Puzz[]⟨expiry, request, puzzle⟩
The array Puzz[] is a list of unsolved puzzles of this eID. Every puzzle has a relatively
short lifespan (typically below 1d). A routing node controls the size of this list by only
accepting requests to a certain extent. Typically, this list should not surpass two entries
as we should have either a maximum of two open quota requests or one identity creation
request.

• Replay[]⟨expiry, serial, numberO f RemainingUsages⟩
The array Replay[] is a list of serials. List entries are created upon their first usage and
remain active until the routing block is expired.

13.2.5 VortexMessages

A VortexMessage is built by combining multiple loosely interconnected blocks. We first name
the blocks and their function, and then we explain the inner workings of the blocks and
provide reasoning why the block has been built as it is.

Figure 13.4 shows an outline of the block structure of a message destined to hosto. For a
mathematical representation, see fig. 13.5.

The first block is the message prefix block MPREFIXo, which has been encrypted with the
public key of the receiving node K1

hosto
. This block contains the key for decrypting the rest of

the message. Each PREFIX block contains a symmetrical key and the specification on how to
encrypt or decrypt with it (mode, padding, IV, and other possibly required parameters) in
ASN.1 encoding.

Immediately following the message prefix block, we have the inner message block. This
message blocks contains three additional blocks and a variable number of payload blocks.
The inner message is encrypted with the symmetrical peer key Kpeero . This peer key is specific
to this message and is nowhere reused. It is only known by the two peer hosts hosto and

77

EKhosto (...)

EKhosto (...) EKsendero (...) EKsendero (...)

EKpeero (...)

pa
yl

oa
d 0

pa
yl

oa
d 1

pa
yl

oa
d p
−

1

HEADERo ROUTINGoKsendero

Kpeero

⟨MPREFIXo, EK peero+1

(︁
HPREFIXo, HEADERo

Ksendero , ROUTINGo
Ksendero , payload*

)︁
⟩

Figure 13.4: Simplified message outline visually and in math.

hosto−1, and the routing block builder (RBB). More importantly, hosto−1 does not need to
know the host key of hosto (Khosto). Therefore, relaying a message to hosto does not enable
hosto−1 communication with hosto.

The blocks HEADERo and ROUT INGo are protected with an additional key Ksendero . The
decryption key is obtained by hosto from the header prefix block HPREFIX. After only
decrypting the header block HEADER and verifying its signature, the accounting layer may
check if further processing is authorized. The splitting of the two keys allows us to. . .

• . . . send a message to hosto without hosto−1 knowing the host key of hosto.

• . . . hide the structure of the message itself.

• . . . keep the content of HEADERo, and ROUTINGo secret from hosto−1.

After authorization by the accounting layer, the header block is processed as outlined in
section 17.2.2. Basically, we just added the routing blocks and payload to the respective
workspace and waited for the routing layer to process the information.

Looking at a full VortexMessage, we get the protocol outline, as shown in (13.10) on page 78.

The routing log block is an onionized block. It contains at least a f orwardS ecret, which must
match up with the header blocks f orwardS ecret. This mechanism is required to guarantee
that routing blocks are not exchanged within an eID. The replyBlock provides a possibility
to contact the original sender of the message without knowing him. It is only a routing block
with instructions on how to prepare the message to be sent. The routing combos contain all
the necessary information and prebuilt blocks to create the subsequent messages.

At the very end, we have the payload blocks. These blocks are simply added to the eIDs
workspace according to the operations included in the message.

The routing and header blocks are doubly encrypted. We could argue that the inner message
block should not be encrypted with a peer key. This looks like a flaw at first glance but is, in
fact, a very important feature. Without this key, any independent observer with knowledge
about the blending capabilities of a receiving node may. . .

• More easily identify the block structure.
This statement remains regardless of whether ASN.1 or length prefixed structures are
used. If the structure of a VortexMessage is easily identified, the messages may be logged
or dropped.

78 CHAPTER 13. PROTOCOL

VORTEXMESSAGE =⟨MPK−1
hosto , INNERMES S AGE⟩ (13.10)

INNERMESSAGE =⟨CPK−1
hosto , HKsendero , EK−1

sendero (H (HEADER)) ,
[︁
RKsenderN

]︁
, [PL] *⟩KpeerN

(13.11)

MPK−1
hostN =EK−1

hostN

(︁
PREFIX⟨KpeerN⟩

)︁
(13.12)

HPK−1
hostN =EK−1

hostN (HPREFIX⟨KsenderN⟩) (13.13)

HKsenderN =EKsenderN (HEADER) (13.14)

HEADER =⟨K1
senderN , serial, maxReplays, validity, [requests, requestRoutingBlock],

[puzzleIdenti f ier, proo f O f Work]⟩ (13.15)

RKsenderN =EKsenderN (ROUTING) (13.16)

ROUTING =⟨[ROUTINGCOMBO]*, f orwardS ecret, replyBlock, operations⟩
(13.17)

ROUTINGCOMBO =⟨processIntervall, KpeerN+1, recipient, nextMP, nextHP,
nextHEADER, nextROUTING, assemblyInstructions⟩ (13.18)

nextMP =EK1
hosto+1

(︁
Kpeero+1

)︁
(13.19)

nextHP =EK1
hosto+1

(︀
Ksendero+1

)︀
(13.20)

nextHEADER =EKsendero (HEADERo+1) (13.21)

nextROUTING =EKsendero (ROUTINGo+1) (13.22)

operations =⟨list of operations⟩ (13.23)

assembyInstructions =⟨blendingIn f ormation, nextHop, ⟨list of mapping operations⟩⟩
(13.24)

PL =⟨payload octets⟩* (13.25)

(13.26)

Figure 13.5: Detailed representation of a VortexMessage.

• Identify the routing block size.
The value of this information is minimal as it only reflects the complexity of the remain-
ing routing information indirectly.

• Identify the number of payload blocks and their respective sizes.
Sizing information is valuable when following the path of a message.

13.2.5.1 Message Structure Related to Censorship Circumvention

It is important to note that there is no structure dividing the encrypted peer key from the
inner message block. The size of the peer key block is defined by the key and algorithm of
the host key.

From an outside perspecive, the whole VortexMessage resembles a structureless data blob
with a maximum of entropy caused by the encryption employed.

This is intentional and by design. Plain embedding also uses a method of splitting, which
allows a message block to be embedded in chunks in the carrier information. By design,

79

neither the message nor their embedding display detectable attributes allowing them to
identify the message.

Exactly as with the routing operations, much care has been applied. Any random sequence
of bytes may be interpreted as valid chunking. For more exact implementation details on
chunking, see section 16.1.2.

13.2.5.2 Message Structure Related to Information Leaking

From the inside, the INNERMESSAGE (see eq. (13.11)) is built as a structure leaking the
absolute minimum of information. A node receiving and decoding the message will learn
the following information:

• The IP of the sender of the transport layer.

• The address and embedding schemes of all receiving transport layers.

• The size of the payload blocks.

• The size of the subsequent routing blocks.

• The peer key Kpeero .

• The size of the prefix blocks.

It is unable to extract the following information:

• The required keys for communicating with the suspected peer node.

• Any information related to message size, content, or recipient.

13.2.6 Routing Operations

The routing operations build the core as they define the capabilities of the mixing. We
decided to introduce three different classes of operations. Wherever we employ crypto
operations, we may choose the operation required for the operation. No choices exist for the
core Reed–Solomon-function, the related padding and spitting operation, and the split and
merge operations.

13.2.6.1 The addRedundancy and removeRedundancy Operations

In this section, we focus on the core operation of our system. The addRedundancy and
removeRedundancy allow growing message sizes in our system without allowing it to identify
the decoy traffic. The Lagrange functions have been proposed in [148] and were more
generalized in [104] for sharing secrets. The general idea about all proposed schemes is to
distribute pieces of information and restrict access to it so that only if a specified number of
shares are captured a secret may be rebuilt. Unlike in these papers proposed, we do not apply
privacy to our protocol by sharing the data among many points. Instead, we use Lagrange
functions to create decoy traffic. By doing so, even a creator of traffic is unable to distinguish
message traffic from decoy traffic.

80 CHAPTER 13. PROTOCOL

These operations build the core routing capabilities of a node. The operation allows an RBB
to add redundancy to a message or parts of it (payload chunk) information to a message or
to rebuild a block from a chosen set of information.

The operation itself is shown in fig. 13.6.

padding and splitting
[C1], [C2], Rt, s
blocksize

(︁
EK

)︁
Reed-Solomon (m of n)

m, nm, n

ω

EK1 EK2 EKn−1 EKnE, K1...n

C1 C2 Cn−1 Cn

O1 O2 OnOn−1

B1 B2 Bn−m−1 Bn−m

I

Input

Output

merge and unpadding [C1, C2, Rt, s]

inverse Reed-Solomon (m of n) m, n,ω

DK1 DK2 DKn−1 DKn D, K1...n

C1 C2 Cn−1 Cn

I1 I2 InIn−1

B1 B2 Bn−m−1 Bn−m

O

Output

Input

Figure 13.6: Outline of the addRedundancy and removeRedundancy operation.

It may be subdivided into the following operations:

• Padding the original message block in such a way that all resulting blocks are a multiple
of the block size (C1, . . . , Cn) of the encrypting cipher.

• Applying a Reed–Solomon-operation in a given GF(2ω) space with a Vandermonde
matrix.

• Encrypt all resulting blocks with unpadded, symmetrical encryption.

The padding applied in the first step is non-standard padding. The reason for this lies in the
properties required by the operation. The presence of standard padding may leak whether
the block has been successfully decrypted or not. Therefore, we created a padding with the
following properties:

• The padding must not leak whether the rebuild cycle of the operation was successful or
not.

• Anyone knowing the routing block content and the transmitted message must be able
to predict any treated block, including all padding bytes.

• The padded content must provide resulting blocks of required size to enable non-padded
encryption after the RS operation.

• The padding must work with any size of padding space.

• The padded and encrypted block must not leak an estimate of the original content.

The padded block X is created from a padding value p, the unpadded block M and a series
of padding bytes. We build X for a function RS m of n (allows adding m redundancy blocks)

81

and an encryption block M sized K as follows:

i = len(M) (13.27)

e = lcm
(︁
blocksize

(︁
EK

)︁
, n

)︁
(13.28)

l =
⌈︃
i + 4 +C2

e

⌉︃
· e (13.29)

p = i +
(︃
C1 · l (mod

⌊︃
232 − 1 − i

l

⌋︃
· l)

)︃
(13.30)

X = ⟨p, M, Rt (s, l − i)⟩ (13.31)

= ⟨p, M, Rt (s, l − (p (mod len (X) − 4)))⟩

Variable i denotes the length. By calculating e as the least common multiplyer of the
encryption block size and the number of output blocks, we determine the block size required
for our operation so that no subsequent padding is required.

The remainder of the input block, up to length l, is padded with random data. The random
padding data may be specified by RBB through a PRNG spec Rt and an initial seed value
s. The message is padded up to size L. None of the resulting encrypted blocks require any
padding, because the initial padding guarantees that all resulting blocks are dividable by the
block size of the encrypting function. If not provided by an RBB, an additional parameter C1
is chosen as a random positive integer and C2 = 0 by the node executing the operation.

To reverse a successful message recovery information of a padded block X, we calculate the
original message size by extracting p and carrying out i = len(M) = p (mod len (X)− len (p)).

This padding has many advantages:

1. The padding does not leak if the rebuilding of the original message was successful. Any
value in the padding may reflect a valid value.

2. Since we have a value C2, the statement that a message size is within len(X) >= size >
(len(X) − e) is no longer true and any value smaller len(X) − e may be correct as well.

3. An RBB may predict the exact binary image of the padded message when specifying
C1, C2, and Rt(s,).

4. A node knowing the original parameters C1, C2, and the initial PRNG seed s can detect
successful decryption.

Apart from being non-standard padding, the padding has additional disadvantages:

• The padding is inefficient compared to simple paddings such as PKCS#7

• The padding requires an initialized PRNG to generate the padding data.

• Depending on the chosen parameters, the padding overhead may become significant.

After the padding, the date is ready for the Reed–Solomon-part of the operation. We first
group the data vector into a matrix A with m columns to carry out the operations efficiently.
The previous padding guarantees that all columns have a length, which is dividable by the
block size of the encryption step applied later.

82 CHAPTER 13. PROTOCOL

t = n − 1 (13.32)

A = vec2mat
(︃
X,

len (X)
m

)︃
(13.33)

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
00 01 02 · · · 0(m−1)

10 11 12 · · · 1(m−1)

20 21 22 · · · 2(m−1)

...
...

...
t0 t1 t2 · · · t(m−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13.34)

P = VA (GF (2ω)) (13.35)

⟨Q1, . . . , Qn⟩ = row2vec(P) (13.36)

Ri = EKi (Qi) (13.37)

We apply the Reed–Solomon-function by employing a Vandermonde matrix (V). We build
the data matrix (A) by distributing the data into len(X)

m columns. This results in a matrix
with m rows. Unlike in error-correcting systems, we do not normalize the matrix so that the
result of the first blocks is equivalent to the original message. Instead, the error-correcting
information is distributed over all resulting blocks (Qi). Since the entropy of the resulting
blocks is lowered as shown in fig. 26.3 and may thus leak an estimate of how a resulting
block may have been treated, we added the encryption step to equalize entropy again. The
previously introduced padding guarantees that there is no further padding required on the
block-level. The key used to encrypt the single blocks must not be equivalent. Equivalent
keys have the side effect of encrypting equal blocks into the same ciphertext. We observed
faint but statistically relevant reminders of the unencrypted graphs when treating the same
block with the same key and different redundancy parameters. Details about this analysis
are available in section 26.3.1.3.

13.2.6.2 The encrypt and decrypt Operations

The encrypt and decrypt operations as shown in fig. 13.7 are essential for the requirement
that tagging should not be possible. Unlike the addRedundancy and removeRedundancy, the
splitting operations do not feature any encryption step after splitting or merging. Reusing
a payload block that has only been split or merged would repeat the payload pattern on
multiple nodes during transfer. That is why we require encryption.

EKo

I

Input

O

Output

E, Ko DKo

O

Output

I

Input

D, Ko

Figure 13.7: Outline of the encrypt and decrypt operation.

The reason for not building this step into the split and merge function was simple. We needed
a separate encryption step to be able to work as an onionizing system, and there were use

83

cases where integrated encryption did not make sense. For further details on this topic, see
section 22.1.

13.2.6.3 The mergePayload and splitPayload operation

The splitPayload operation shown in fig. 13.8 splits a payload block into two chunks of
different or equal sizes. The parameters for this operation are:

• source payload block pb1

• fraction f
A floating-point number describing the size of the first chunk. If the fraction is “1.0”,
then the whole payload is transferred to the second target chunk.

split

I

Input

O1

Output

O2

f merge

O

Output

I1

Input

I2

Figure 13.8: Outline of the splitPayload and mergePayload operation.

If len(pb1) expresses the size of a payload block called pb1 in bytes, then the two resulting
blocks of the splitPayload operation pb2 and pb3 have to adhere the following rules:

split(f , pb1) = ⟨pb1, pb2⟩ (13.38)

pb1.startsWith(pb2) (13.39)

pb1.endsWith(pb3) (13.40)

len(pb2) = f loor(len(pb1) · f) (13.41)

len(pb1) = len(pb2) + len(pb3) (13.42)

The mergePayload operation combines two payload blocks into one. The parameters for this
operation are:

• first source payload block pb1

• second source payload block pb2

If len(pb) expresses the size of a payloadblock called pb in bytes then resulting block of the
mergePayload Operation pb3 has to adhere the following rules:

84 CHAPTER 13. PROTOCOL

merge(pb1, pb2) = pb3 (13.43)

pb3.startsWith(pb1) (13.44)

pb3.endsWith(pb2) (13.45)

len(pb3) = len(pb1) + len(pb2) (13.46)

Unlike other operations, this operation has no encryption step attached to it. We usually
attached an encryption step to remove repeating patterns from the VortexMessage stream.

It has to be mentioned that this operation tuple has some issues when it comes to floating-
point implementations. They are solvable but had to be specified unexpectedly precisely in
order to enable a true cross-platform implementation. For more information regarding the
issue and exact implementation, see section 17.2.4.

13.3 Summary

The MessageVortex-Protocol is split into the four layers: “Transport” (a common Internet
standard protocol), “Blending” (extracting and embedding VortexMessages), “Routing” (re-
assembling messages according to received instructions), and “Accounting” (tracks all stored
data and discards expired information).

All nodes are realized in decentralized devices such as computers or mobile phones. Messages
are hidden with either plain embedding or F5 in the transport layer message. The routing
layer processes messages by applying operations to them. Valid operations are: encrypt or
decrypt a message chunk, split a message chunk into two parts, merge two parts into one,
or add or remove redundancy information. The last operation is the most valuable. This
operation allows by employing an extended Reed–Solomon-operation to add decoy traffic to
the message flow without enabling a node to identify such traffic. Furthermore, it allows a
sender to send parts of a message through multiple chains of routing nodes to a recipient.
Each message itself does not leak the message content since, depending on the completing
block, any message with the appropriate length may be valid.

The routing itself is achieved in a temporarily allocated storage called “workspace”, which is
tied to an ephemeral identity (eID) represented by an asymmetric key pair. To obtain an eID,
a sender typically solves a crypto puzzle.

Payloads of VortexMessages are mapped into the workspace and are assigned a unique ID
within that workspace. The subsequent routing blocks and their operations are added as
well and processed in a time interval defined by the RBB.

VPart

Implementation

No matter how hard you work,
someone else is working harder.

Elon Musk, entrepreneur

86 PART V. IMPLEMENTATION

87

The implementation of our system differs from the academic model in some details. It is
foremost more precise than the academic model. Furthermore, it requires a strict definition
of the implementation to guarantee the interoperability between different implementations.

This section focuses on the details of our reference implementation in Java. In chapter 14,
we explain the selection of algorithms used by the protocol in general. We then focus on the
implementation of the transport (chapter 15), blending (chapter 16), routing (chapter 17),
and accounting (chapter 18) layers. We then look at the usability (chapter 19) and efficiency
(chapter 15). Aspects relevant to the implementations’ usability and efficiency are covered in
chapter 19 and chapter 19.

14 Algorithms, Encodings, and Protocols Selection
In this chapter, we choose the following mandatory supported algorithms:

• Encoding: ASN.1

• Encryption

– AES128/256

– Camellia128/256

• Modes

– ECB

– GCM

• Paddings

– PKCS#1

– PKCS#7

• MACs

– SHA256/512

– RIPE-MD256

• PRNG

– mrg32k3a

– blumMicali

Where security-relevant, we always choose two independent algorithms. As our protocol
has the means of signaling them, we may support additional algorithms without affecting
communication while improving the variety of available algorithms.

In the following sections, we emphasize on the choice and the encoding used on the protocol
level.

For all algorithms, we apply the following criteria:

• Always focus on common standards

88 CHAPTER 14. ALGORITHMS, ENCODINGS, AND PROTOCOLS SELECTION

• Focus on interoperability when selecting standards

• Focus on efficiency (wherever possible use simple, parallelizable algorithms)

• When sensible and possible, chose at least two unrelated algorithms (e.g., cryptographic
algorithms or MACs) based on different mathematical problems

14.1 Encoding Scheme

As encoding scheme, we specified ASN.1 [40]. It is more compact than the initially selected
XML-Standard and is very common in telecommunication and encryption (e.g., the represen-
tation of X509 is in ASN.1). To maintain interoperability, we choose DER-encoding as it has
precisely one possible representation for every value. Such a strict definition of encoding is
important when signing or solving puzzles in our case and is required to diagnose message
paths.

On the downside, ASN-1-encoding is, unlike XML, unreadable by humans. As we hide the
messages, we considered this a minor flaw, as we need to have a constantly-extracting
program to see the messages’ content.

14.2 Cipher Selection

In this protocol, many encryption and hashing algorithms have to be used. In the following,
we explain the choice of these algorithms.

We decided to define fixed key sizes for symmetric ciphers as we chose block ciphers. For
asymmetric ciphers, we encode the key length in the asymmetric ciphers’ parameters section.
Due to their mathematical differences, they are frequently flexible in their parameters such
as key or block sizes.

From the requirements side, we adhere to the following principle: First of all, we need a
subset of encryption algorithms all implementations may rely on. Defining such a subset
guarantees interoperability between all nodes regardless of their origin.

Secondly, we need to have a spectrum of algorithms so that it may be (a) enlarged if necessary
and (b) there is an alternative. If an algorithm (or a mathematical problem class) is broken,
we have to withdraw broken algorithms without affecting the function in general.

Third, due to the onion-like design described in this document, our protocol should avoid
asymmetric encryption in favor of symmetric encryption to minimize losses due to the key
length and the generally higher CPU-load opposed by asymmetric keys.

If the algorithm is generally bound to specific key sizes (due to S-Boxes or similar constructs),
the key length is incorporated into the definition. If not, the key size is handled as a parameter.

The key sizes were chosen so that the key types form tuples of approximately equal strength.
The support of Camellia192 and AES192 was defined as optional. However, as they are wildly
common in implementations, they have already been standardized as they build a possibility
to enhance security in the future.

From these criteria, we chose to use the following keys and key sizes:

89

1 SymAlgSpec : : = SEQUENCE {
2 a l g o r i t h m [1 6 1 0 1] Symmetr icAlgor i thm ,
3 −− i f ommited : pkcs7
4 padding [1 6 1 0 2] CipherPadding OPTIONAL ,
5 −− i f ommited : cbc
6 mode [1 6 1 0 3] CipherMode OPTIONAL ,
7 parameter [1 6 1 0 4] A lgParamete r s OPTIONAL
8 }
9

10 AsymAlgSpec : : = SEQUENCE {
11 a l g o r i t h m Asymmetr icAlgor i thm ,
12 −− i f ommited : pkcs1
13 padding [1 6 1 0 2] CipherPadding OPTIONAL ,
14 parameter A lgParamete r s OPTIONAL
15 }
16
17 SymmetricKey : : = SEQUENCE {
18 keyType Symmetr icAlgor i thm ,
19 parameter A lgParameters ,
20 key OCTET STRING (SIZE (1 6 . . 5 1 2))
21 }
22
23 AsymmetricKey : : = SEQUENCE {
24 keyType Asymmetr icAlgor i thm ,
25 −− p r i v a t e key encoded as PKCS # 8 / P r i v a t e K e y I n f o
26 p u b l i c K e y [2] OCTET STRING ,
27 −− p r i v a t e key encoded as
28 −− X . 5 0 9 / S u b j e c t P u b l i c K e y I n f o
29 p r i v a t e K e y [3] OCTET STRING OPTIONAL
30 }
31
32 Symmetr icAlgor i thm : : = ENUMERATED {
33 aes128 (1 0 0 0) , −− r e q u i r e d

34 aes192 (1 0 0 1) , −− o p t i o n a l s u p p o r t
35 aes256 (1 0 0 2) , −− r e q u i r e d
36 c a m e l l i a 1 2 8 (1 1 0 0) , −− r e q u i r e d
37 c a m e l l i a 1 9 2 (1 1 0 1) , −− o p t i o n a l s u p p o r t
38 c a m e l l i a 2 5 6 (1 1 0 2) , −− r e q u i r e d
39 t w o f i s h 1 2 8 (1 2 0 0) , −− o p t i o n a l s u p p o r t
40 t w o f i s h 1 9 2 (1 2 0 1) , −− o p t i o n a l s u p p o r t
41 t w o f i s h 2 5 6 (1 2 0 2) −− o p t i o n a l s u p p o r t
42 }
43
44 Asymmetr icAlgor i thm : : = ENUMERATED {
45 r s a (2 0 0 0) ,
46 dsa (2 1 0 0) ,
47 ec (2 2 0 0) ,
48 n t r u (2 3 0 0)
49 }
50 ECCurveType : : = ENUMERATED {
51 s e c p 3 8 4 r 1 (2 5 0 0) ,
52 s e c t 4 0 9 k 1 (2 5 0 1) ,
53 s e c p 5 2 1 r 1 (2 5 0 2)
54 }
55 A lgParamete r s : : = SEQUENCE {
56 k e y S i z e [9 0 0 0] INTEGER (0 . . 6 5 5 3 5) OPTIONAL ,
57 curveType [9 0 0 1] ECCurveType OPTIONAL ,
58 i v [9 0 0 2] OCTET STRING OPTIONAL ,
59 nonce [9 0 0 3] OCTET STRING OPTIONAL ,
60 mode [9 0 0 4] CipherMode OPTIONAL ,
61 padding [9 0 0 5] CipherPadding OPTIONAL ,
62 n [9 0 1 0] INTEGER OPTIONAL ,
63 p [9 0 1 1] INTEGER OPTIONAL ,
64 q [9 0 1 2] INTEGER OPTIONAL ,
65 k [9 0 1 3] INTEGER OPTIONAL ,
66 t [9 0 1 4] INTEGER OPTIONAL
67 }

Figure 14.1: Definition of the structures related to ciphers.

• Symmetric

– AES (key sizes: 128, 192, 256)

– Camellia (key sizes: 128, 192, and 256)

• Asymmetric

– RSA (key size: 2048, 4096, and 8192)

– Named Elliptic Curves

∗ secp384r1
∗ sect409k1
∗ secp521r1

• Hashing

– sha3-256

– sha3-384

– sha3-512

– RIPE-MD160

– RIPE-MD256

– RIPE-MD320

Within the implementation, we assigned algorithms to a security strength level:

• LOW
AES128, Camellia128, RSA1024, sha3-256

• MEDIUM
AES192, Camellia 192, RSA2048, ECC secp384r1, sha3-256

90 CHAPTER 14. ALGORITHMS, ENCODINGS, AND PROTOCOLS SELECTION

• HIGH
AES256, Camellia256, RSA4096, ECC sect409k1, sha3-384

• QUANTUM
AES256, Camellia256, RSA8192, ECC secp521r1, ntru, sha3-512

This allows associating the used algorithms with a strength. This list, however, should only
serve the purpose of selecting algorithms for people without cryptological know-how.

14.3 Mode Selections

We evaluated the most common cipher modes for suitability. For MessageVortex, we focused
on modes with parallelizable, random access modes that do not authenticate. In addition to
the characteristics mentioned before, the main focus was on whether there is a reasonably
tested open implementation in Java.

1 CipherMode : : = ENUMERATED {
2 cbc (1 0 0 0 0) , −− r e q u i r e d
3 c t r (1 0 0 0 1) , −− r e q u i r e d
4 ccm (1 0 0 0 2) , −− o p t i o n a l s u p p o r t
5 gcm (1 0 0 0 3) , −− o p t i o n a l s u p p o r t
6 ocb (1 0 0 0 4) , −− o p t i o n a l s u p p o r t
7 o fb (1 0 0 0 5) , −− o p t i o n a l s u p p o r t
8 x t s (1 0 0 0 6) , −− o p t i o n a l s u p p o r t
9 none (1 0 1 0 0) −− r e q u i r e d

10 }

Figure 14.2: Enumeration definition of modes in ASN.1 with support requirements.

Figure 14.2 shows the selected paddings and their requirement level.

Very important was that we quite often re-encrypt already encrypted content. In theory, a
partially broken mode is much less problematic when encrypting already random content.
However, these flaws are obvious to a crypto savvy person but are not common knowledge.
By always choosing the same mode and only using onionizing schemes, the flaw remains.
To avoid this, we eradicated modes such as ECB despite the fact that their simplicity could
have been a gain for the protocol if properly handled.

• ECB (Electronic Code Book)
ECB is the most basic mode. Each block of the cleartext is encrypted on its own. This
results in a big flaw: blocks containing the same data will always transform to the
same ciphertext. This property makes it possible to see some structures of the plaintext
when looking at the ciphertext. This solution allows the parallelization of encryption,
decryption, and random access while decrypting. Due to these flaws, we rejected this
mode.

• CBC (Cipher Block Chaining)
CBC extends the encryption by XORing an initialization vector into the first block before
encrypting. For all subsequent blocks, the ciphertext result of the preceding block is
taken as XOR input. This solution does not allow parallelization of encryption, but
decryption may be paralleled, and random access is possible. As another disadvantage,
CBC requires a shared initialization vector. As with most IV-bound modes, an IV/key
pair should not be used twice, which has implications for our protocol.

91

• PCBC (Propagation Cipher Block Chaining)
CBC extends the encryption by XORing, not the ciphertext but a XOR result of ciphertext
and plaintext. This modification denies parallel decryption and random access compared
to CBC.

• EAX
We rejected as the mode was analyzed and broken in 2013 in [109].

• CFB (Cipher Feedback) CFB is specified in [43] and works precisely as CBC with the
difference that the plaintext is XORed and the initialization vector, or the preceding
cipher result is encrypted. CFB does not support parallel encryption as the ciphertext
input from the prior operation is required for an encryption round. CFB does however
allow parallel decryption and random access.

• OFB
[43] specifies OFB and works precisely as CFB except for the fact that not the ciphertext
result is taken as feedback but the result of the encryption before XORing the plaintext.
This denies parallel encryption and decryption, as well as random access.

• OCB (Offset Codebook Mode)
This mode was first proposed in [134] and later specified in [135]. OCB is specifically
designed for AES128, AES192, and AES256. It supports authentication tag lengths of
128, 96, or 64 bits for each specified encryption algorithm. OCB hashes the plaintext of
a message with a specialized function HOCB(M). OCB is fully parallelizable due to its
internal structure. All blocks except the first and the last can be encrypted or decrypted
in parallel.

• CTR
CTR is specified in [97] and is a mixture between OFB and CBC. A nonce concatenated
with a counter incrementing on every block is encrypted and then XORed with the
plaintext. This mode allows parallel decryption and encryption, as well as random
access. Reusing IV/key-pairs using CTR is a problem as we might derive the XORed
product of two messages. This problem only applies where messages are not uniformly
random such as in an already encrypted block.

• CCM
Counter with CBC-MAC (CCM) is specified in [169]. It allows for padding and au-
thenticating encrypted and unencrypted data. It furthermore requires a nonce for its
operation. The size of the nonce is dependent on the number of octets in the length
field. In the first 16 bytes of the message, the nonce and the message size is stored. For
the encryption itself, CTR is used. It shares the same properties as CTR.

It allows parallel decryption and encryption as well as random access.

• GCM (Galois Counter Mode)
GCM has been defined in [105], and is related to CTR but has some major differences.
The nonce is not used (just the counter starting with value 1). An authentication token
auth is hashed with HGFmult and then XORed with the first cipher block to authenticate
the encryption. All subsequent cipher blocks are XORed with the previous result and
then hashed again with HGFmult. After the last block the output o is processed as follows:
HGFmult(o

⨁︀
(len(A)||len(B)))

⨁︀
EK0

(counter0). As a result, GCM is not parallelizable
and does not support random access.

92 CHAPTER 14. ALGORITHMS, ENCODINGS, AND PROTOCOLS SELECTION

The mode was analyzed security-wise in 2004 and showed no weaknesses in the studied
fields [106].

GCM supports parallel encryption and decryption. Random access is possible. However,
authentication of encryption is not parallelizable. The authentication makes it unsuitable
for our purposes. Alternatively, we could use a fixed authentication string.

• XTS (XEX-based tweaked-codebook mode with ciphertext stealing)
This mode is standardized in IEEE 1619-2007 (soon to be superseded). A rough overview
of XTS may be found at [101]. It was developed initially for disks offering random access
and authentication at the same time.

• CMC (CBC-mask-CBC) and EME (ECB-mask-ECB)
In [69] Halevi and Rogaway introduces a cipher mode which is extremely costly as it
requires two encryptions. CMC is not parallelizable due to the underlying CBC mode,
but EME is.

• LRW
LRW is a tweakable narrow-block cipher mode described in [164]. This mode shares the
same properties as EBC but without the same cleartext block’s weakness resulting in
the same ciphertext. Similar to XEX, it requires a tweak instead of an IV.

We decided to mainly use CBC. However, most of the implementations are available and
lightweight. We therefore were not as restrictive as usual when defining a minimal set.

14.4 Padding Selection

A plain textstream may have any length. Since we always encrypt in blocks of a fixed size,
we need a mechanism to indicate how many bytes of the last encrypted block may be safely
discarded.

We have chosen the paddings outlined in fig. 14.3 to be supported.

1 CipherPadding : : = ENUMERATED {
2 none (1 0 2 0 0) , −− r e q u i r e d
3 pkcs1 (1 0 2 0 1) , −− r e q u i r e d
4 rsaesOaep (1 0 2 0 2) , −− o p t i o n a l s u p p o r t
5 oaepSha256Mgf1 (1 0 2 0 3) , −− o p t i o n a l s u p p o r t
6 pkcs7 (1 0 3 0 1) , −− r e q u i r e d
7 ap (1 0 2 2 1) −− r e q u i r e d
8 }

Figure 14.3: Enumeration definition of paddings in ASN.1 with support requirements.

14.4.1 RSAES-PKCS1-v1_5 and RSAES-OAEP

This padding is the older one of the paddings standardized for PKCS1. It is basically a prefix
of two bytes followed by a padding set of non-zero bytes and then terminated by a zero byte
and then followed by the message. This padding may give a clue if decryption was successful
or not. RSAES-OAEP is the newer of the two padding standards.

93

14.4.2 PKCS7

This padding is the standard used in many places when applying symmetric encryption in
an up to 256 bit key length. The free bytes in the last cipher block indicate the number of
bytes being used. This makes this padding very compact. It requires only 1 byte of available
data at the end of the block. All other bytes are defined but not needed.

14.4.3 OAEP with SHA and MGF1 Padding

This padding is closely related to RSAES-OAEP padding. However, the hash size is larger,
and thus the required space for padding is much higher. OAEP with SHA and MGF1 padding
is used in asymmetric encryption only. Due to its size, it is essential to note that the last
block’s payload shrinks to keyS izeInBits/8 − 2 − MacS ize/4.

In our approach, we chose to allow these four paddings. The allowed SHA sizes match the
allowed MAC sizes chosen above. It is important to note that padding uses space at the
end of a stream. Since we are always using one block for signing, we have to ensure that
the chosen signing MAC and the bytes required for padding do not exceed the asymmetric
encryption’s key size. While this usually is not a problem for RSA as there are keys 1024+
bits required, it is an essential problem for ECC algorithms as there are much shorter keys
needed to achieve an equivalent strength compared to RSA.

14.4.4 Honorable Mention: A Padding for redundancy Operations

We introduced an additional type of padding not related to these paddings. For the
addRedundancy, we required the following unique properties. Unfortunately, we were unable
to find any padding which matched the following properties simultaneously:

• Padding must not leak successful decryption
For our addRedundancy operation, we required padding that had no detectable structure,
as a node should not be able to tell whether a removeRedundancy operation did generate
content or decoy.

• Padding of more than one block
Due to the nature of the operation, it is required to pad more than just one block.

This padding is the only one for the addRedundancy and removeRedundancy operations. A
specification may be found in section 13.2.6.1.

14.4.5 Pseudo Random Number Generator Selection

For our addRedundancy and removeRedundancy operations, we needed a pseudo random
number generator (PRNG). For our implementation, we did not research this part in depth
as it seemed irrelevant. The only criterion was that it had to create content indistinguishable
from an encrypted message. This criterion arose as we used it for invisibly padding an already
encrypted message.

94 CHAPTER 14. ALGORITHMS, ENCODINGS, AND PROTOCOLS SELECTION

The PRNG used for our implementation is an XORshift+ generator. It is based on the XSadd
PRNG [100] and passes the bigcrush PRNG test suite. It is a fast, XOR-based PRNG which
has two internal 64-bit seed states s0 respectively s1 and is defined as follows:

x = s0 (14.1)

s0 = s1 (14.2)

x = x ⊕ (x ≪ 23) (14.3)

s1 = x ⊕ s1 ⊕ (x ≫ 17) ⊕ (s1 ≫ 26) (14.4)

nextNumber = s1 + s0 (14.5)

We chose this comparably weak PRNG for practical reasons. It is fast, simple, and is based
on operations easy to implement on hardware. As we do not need a cryptographically strong
PRNG, it is our primary choice so far.

As the protocol is heavily dependent on security, we introduced everywhere at least one
alternate algorithm that may be used to replace a broken algorithm.

To have a second choice for the PRNG, we define the Blum–Micali PRNG as described in [16].
This PRNG is cryptographically secure and is defined as follows:

p is prime, and g is a primitive root modulo p. x0 reflects the seed state.

xi+1 = gxi mod p (14.6)

This PRNG requires significantly more calculation power than the XORshift+ PRNG. On the
positive side, the PRNG is well researched, and we have found no weaknesses documented
in academia.

14.5 Transport Layer Protocol Selection

The following sections list common Internet protocols. We analyze those protocols for the
fitness as transport layer of MessageVortex.

We will identify SMTP and XMPP as suitable transport layer protocols for the MessageVortex
approach, as they have all required properties.

All sections are structured the same. We first refer to the protocol or standard and describe
it in the simplest possible form. We refer to subsequent standards if required to consider
extensions where sensible. We then apply the previously referenced criteria and concisely
summarize the protocol’s suitability as a transport layer. The findings of this section are
listed in table 14.1. The list here does not reflect the quality or maturity of the protocols. It
is a simple analysis of suitability as a transport layer.

14.5.1 Applied Criteria

• Widely Adopted (Ct1)
The more widely-adopted and used a protocol is, the more diffitcult it is due to the

95

sheer mass for an adversary to monitor, filter, or block the protocol. This is important
for censorship resistance of the protocol.

• Reliable (Ct2)
Message transport between peers should be reliable. As messages may arrive anytime
from everywhere, we do not have the means to synchronize the peer partners on a
higher level without investing a considerable effort. Furthermore, the availability of
information when what type of information should be available at a specific point in the
system would drastically simplify the identification of peers. To avoid synchronization,
we search for inherently reliable protocols.

• Symmetrically Built (Ct3)
The transport layer should rely on a peer-to-peer base. All servers implement a generic
routing that requires no prior knowledge of all possible targets. This criterion neglects
centralized infrastructures. This criterion may be dropped, assuming that the blending
layer or a specialized transport overlay is responsible for routing.

14.5.2 Analyzed Protocols

We were unable find a comprehensive list of protocols being used within the Internet and
their bandwidth consumption. A weak reference is [172]. This weakness is founded because
traffic in this report is classified among two criteria: Know server or known port. According to
the report, streaming services consume more than 60% of the Internet download bandwidth.
The focus of the report lies on the bandwidth-intense figures. However, leaving aside all
sources which are strictly one way or dominated by a small number of companies worldwide,
the “top 10” list of the report shrinks to the two categories “File sharing” (Rank 5; 4.2%
download and 30.2% upload) and “Messaging” (Rank 8; 1.6% download and 8.3% upload
bandwidth).

We first collected a list of all common Internet messaging protocols (synchronous and
asynchronous in lacking such material). We then added some of the most common transfer
protocols such as HTTP and FTP and analyzed this list.

• Messaging Protocols

– SMTP

– CoAP

– MQTT

– AMQP

– XMPP

– WAMP

– SMS

– MMS

• Other Protocols

– FTP, SFTP, and FTPS

– TFTP

96 CHAPTER 14. ALGORITHMS, ENCODINGS, AND PROTOCOLS SELECTION

– HTTP

The following protocols were discarded as we consider them as outdated:

• MTP [152] (obsoleted by SMTP)

• NNTP [49] (outdated and has only a small usage according to [81])

We furthermore discarded all RPC-related protocols as they would, by definition, violate the
symmetry criteria (Ct3: Symmetrically Built).

14.5.3 Analysis

14.5.3.1 HTTP

The HTTP protocol allows message transfer from and to a server and is specified in
RFC2616 [112]. It is not suitable as a communication protocol for messages due to the
lack of notifications. Some extensions would allow such communications (such as WebDAV).
Still, in general even those are not suitable as they require a continuous connection to the
server to get notifications. Having a “rollup” of notifications when connecting is not there by
default but could be implemented on top of it. HTTP servers listen on standard ports 80 or
443 for incoming connects. Port 443 is equivalent to port 80, except that it has a wrapping
encryption layer (usuall TLS). The incoming connects (requests) must offer a header part
and may contain a body part suitable for transferring messages to the server. The reply to
this request is transferred over the same TCP connection containing the same two sections.

HTTP0.9-HTTP/1.1 are cleartext protocols that are human-readable (except for the data part,
which might contain binary data). The HTTP/2 [13] protocol is using the same ports and
default behavior. Unlike HTTP/0.9-HTTP/1.1, it is not a cleartext but encodes headers and
bodies in binary form.

To be a valid candidate as storage, unauthenticated WebDAV support, as specified in [42],
must be assumed.

The protocol satisfies the first two main criteria (Ct1: Widely Adopted and Ct2: Reliable).
The main disadvantage in terms of a message transport protocol is that this protocol is
not symmetrical. A server is always just “serving requests” and not sending information
actively to peers. This request–reply violates criteria (Ct3: Symmetrically Built) and makes
the protocol not a primary choice for message transport.

It is possible to add such behavior to the blending layer using HTTP servers as pure storage.
Such behavior would however most likely be detectable and thus no longer be censorship-
resistant.

14.5.3.2 FTP

FTP is defined in RFC959 [125]. This protocol is intended for authenticated file transfer only.
There is an account available for general access (“anonymous”). This account does normally
not offer upload rights for security reasons. It is possible to use FTP as a message transfer
endpoint. The configuration would work as follows: the user “anonymous” only has upload

97

rights. He is unable to download or list a directory. A node may upload a message with a
random name. In case a collision arises, the node retries with another random name. The
blending layer picks messages up using an authenticated user. This workaround has multiple
disadvantages. At first, handling FTP that way is very uncommon and usually requires an
own dedicated infrastructure. Such behavior would make the protocol possibly detectable
again. Secondly, passwords are always sent in the clear within FTP. Encryption as a wrapping
layer (FTPS) is not common, and SFTP (a subsystem of SSH) has nothing in common with
FTP except for the fact that it may transfer files as well.

Furthermore, FTP may be problematic when used in active mode for firewalls. All these
problems make FTP not very suitable as a transport layer protocol. FTPS and SFTP feature
similar weaknesses as the FTP version in terms of detectability of non-standard behavior.

Similar to HTTP, a disadvantage of FTP in terms of a message transport protocol is that
this protocol is not symmetrical. A server is always just “serving requests” and not sending
information actively to peers. This request–reply violates criteria (Ct3: Symmetrically Built)
and makes the protocol not a primary choice for message transport. The protocol, however,
satisfies the first two criteria (Ct1: Widely Adopted and Ct2: Reliable).

14.5.3.3 TFTP

TFTP has, despite its naming similarities to FTP, very little in common with it. TFTP is a
UDP-based file transfer protocol without any authentication scheme. The possibility of
unauthenticated message access makes it not suitable as a transport layer. The protocol is
due to the use of UDP in a meshed network with redundant routes. Since the Internet has
many redundant routes, this neglects the use of this protocol.

TFTP is rarely ever used on the Internet, as its UDP-based nature is not suitable for a network
with redundant routes. Not being common on the Internet, violates criterion one (Ct1: Widely
Adopted). TFTP is asymmetrical. This means that a server is always just “serving requests”
and not sending information actively to peers. This request–reply violates criteria (Ct3:
Symmetrically Built) and makes the protocol not a primary choice for message transport.
Furthermore, the protocol violates Ct2 (Ct2: Reliable) as it is based on UDP without any
additional error correction.

14.5.3.4 MQTT

MQTT is an ISO standard (ISO/IEC PRF 20922:2016) and was formerly called MQ Telemetry
Transport. The current standard as the time of writing this document was 5.0 [8].

The protocol runs by default on the two ports 1883 and 8883 and can be encrypted with
TLS. MQTT is a publish/subscribe-based message-passing protocol that is mainly targeted
to M2M communication. This protocol requires the receiving party to be subscribed to a
central infrastructure to receive messages. Such behavior makes it very difficult to use it in a
system without centralistic infrastructure and static routes between senders and recipients.

The protocol does satisfy the second criterion (Ct2: Reliable). It is in the end-user area (i.e.,
Internet) not widely adopted, thus violating Criteria 1 (Ct1: Widely Adopted). In terms of
decentralization design, the protocol fails as well (Ct3: Symmetrically Built).

98 CHAPTER 14. ALGORITHMS, ENCODINGS, AND PROTOCOLS SELECTION

14.5.3.5 Advanced MessageQueuing Protocol (AMQP)

The Advanced Message Queuing Protocol (AMQP) was initially initiated by numerous
exponents based mainly on finance-related industries. The AMQP-protocol is either used for
communication between two message brokers or between a message broker and a client [7].

It is designed to be interoperable, stable, reliable, and safe. It supports either SASL- or
TLS-secured communication. The immediate sender of a message controls the use of such a
tunnel. In its current version 1.0, it does, however, not support a dynamic routing between
brokers [7].

Due to the lack of a generic routing capability, this protocol is not suitable for message
transport in a generic, global environment.

The protocol partially satisfies the first criterion (Ct1: Widely Adopted) and fully meets the
second criterion (Ct2: Reliable). However, the third criterion is violated due to the lack of
routing capabilities between message brokers (Ct3: Symmetrically Built).

14.5.3.6 Constrained Application Protocol (CoAP)

The Constrained Application Protocol (CoAP) is a communication protocol that is primarily
destined for M2M communication. It is defined in RFC7252 [18]. It is defined as a lightweight
replacement for HTTP in IoT devices and is based on UDP.

The protocol does partially satisfy the first criteria (Ct1: Widely Adopted). The second
criterion (Ct2: Reliable) is only partially fulfilled as it is based on UDP and does only add
limited session control on its own.

The main disadvantage of a message transport protocol is that this protocol is not (like HTTP)
symmetrical. This means that a server is always just “serving requests” and not sending
information actively to peers. This request–reply violates criteria (Ct3: Symmetrically Built)
and makes the protocol not a primary choice for message transport.

14.5.3.7 Web Application Messaging Protocol (WAMP)

WAMP is a web-socket-based protocol destined to enable M2M communication. Similar to
MQTT, the protocol is publish/subscribe-oriented. Unlike MQTT, it allows remote procedure
calls (RPC).

The WAMP protocol is not widely adopted (Ct1: Widely Adopted), but it is reliable on a
per-node base (Ct2: Reliable). Due to its RPC-based capability, unlike MQTT, a routing-like
capability could be implemented. Symmetrical protocol behavior is therefore not available
but could be built in relatively easily.

14.5.3.8 XMPP (Jabber)

XMPP (originally named Jabber) is a synchronous message protocol used in the Internet. It is
specified in the documents RFC6120 [138], RFC6121 [139], RFC3922 [137], and RFC3923 [136].
The protocol is a very advanced chat protocol featuring numerous levels of security including
end-to-end signing and object encryption [136]. There is also a stream initiation extension
for transferring files between endpoints [162].

99

It has generic routing capabilities spanning between known and unknown servers. The
protocol offers a message retrieval mechanism for offline messages similar to POP [122].

The protocol itself seems to be a strong candidate as a transport layer as it is being actively
used on the Internet.

14.5.3.9 SMTP

The SMTP protocol is currently specified in [83]. It specifies a method of reliably delivering
asynchronous mail objects through a specific transport medium (most of the time, the
Internet). The document splits a mail object into a mail envelope and its content. The
envelope contains the routing information, containing a sender (one) and one or more
recipients encoded in 7-bit ASCII. The envelope may additionally contain optional protocol
extension material.

The content should be in 7-bit-ASCII (8-bit-ASCII may be requested, but this feature is not
widely adopted). It is split into two parts, which are: the header (which contains meta-
information about the message such as subject, reply address, or a comprehensive list of
all recipients) and the body, which includes the message itself. All content lines must be
terminated with a CRLF and must not be longer than 998 characters, excluding CRLF.

The header consists of a collection of header fields. Each of them is built by a header name,
a colon, and the data. The header’s exact outline is specified in [132] and separated with a
blank line from the body.

RFC5321 [83] furthermore introduces a simplistic model for SMTP message-based communi-
cation. A more comprehensive model is presented in section as the proposed model is not
sufficient for a detailed end-to-end analysis.

Traditionally, the message itself is MIME-encoded. The MIME messages are mainly specified
in [54] and [55]. MIME allows sending messages in multiple representations (alternates) and
attaching additional information (such as possibly inlined images or attached documents).

SMTP is one of the most common messaging protocols on the Internet (Ct1: Widely Adopted),
and it would be devastating for the business of a country if, for censoring reasons, this protocol
would be cut off. Furthermore, the protocol is very reliable as it has built-in support for
redundancy and a thorough message design, making it relatively easy to diagnose problems
(Ct2: Reliable). All SMTP servers usually are capable of routing and receiving messages.
Messages going over several servers are common (Ct3: Symmetrically Built), so the third
criterion may be consiered fulfilled.

SMTP is considered a strong candidate as a transport layer.

14.5.3.10 SMS and MMS

Telephone companies introduced the SMS capability in the SS7 protocol. This protocol allows
the message transfer of messages no larger than 144 characters. Due to this restriction in
size, it is unlikely to be suitable for this type of communication. The keys required for our
protocol are already similarly sized, leaving no space for messages or routing information.

The 3rd Generation Partnership Project (3GPP) maintains the Multimedia Messaging Service
(MMS). This protocol is mainly a mobile protocol based on telephone networks.

100 CHAPTER 15. TRANSPORT LAYER IMPLEMENTATION

Both protocols are not widely adopted within the Internet domain. There are gateways
providing bridging functionalities to the SMS/MMS services. However, the protocol itself is
insignificant on the Internet.

14.5.4 Results

We have shown that all common M2M protocols failed mainly at Ct3 as there is no need
for message routing. In M2M communication, contacting foreign machines is not common.
In consequence, M2M protocols typically use static M2M communication over prepared
channels. Such behavior is however unsuitable for a generic messaging protocol.

Pure storage protocols fail at the same criteria as they typically have a defined set of data
sources and data sinks. Additionally, at least the data sources are typically limited in number.
Such constraints make those protocols unsuitable again.

We can clearly state that according to the criteria, only a few protocols are suitable. Table 14.1
on page 100 shows that only SMTP and XMPP are suitable protocols. Eventually, similar
protocols such as HTTP (with WebDAV) or FTP may be usable as well.

aaaaaa
Protocol

Criteria
Ct1: Widely Adopted Ct2: Reliable Ct3: Symmetrically Built

HTTP ✓ ✓ ×

FTP ✓ ✓ ×

TFTP × × ×

MQTT ~ ✓ ×

AMQP ~ ✓ ×

CoAP ~ ~ ×

WAMP × ✓ ~
XMPP ✓ ✓ ✓
SMTP ✓ ✓ ✓

Table 14.1: Comparison of protocols in terms of the suitability as transport layer.

The findings of this short analysis suggested that we should use the two protocols, SMTP
and XMPP, for our first standardization. We require at least two to prove that the protocol is
agnostic to the transport.

15 Transport Layer Implementation

15.1 Implementation of a Dummy Transport Layer

For better diagnosability and fast setup, we implemented a custom transport layer working
on a config-less manner in a localhost or broadcast-domain environment. The transport
layer is based on the Hazelcast distributed hashmap. Implementation may be found under
net . messagevor t ex . t r a n s p o r t . dummy . DummyTransportTrx.

15.2 Implementation of an Email Transport Layer

Email supports a conglomerate of protocols. Looking at the client-side, we will find that an
email is sent with an authenticated SMTP connection. The SMTP connection is somewhat
different than than the connections used to send emails to a destination. First of all, the
client port was shifted in the past to a specific submission port (SMTPS: Port 465; Submission:

101

Port 587). Such submission ports are authenticated (either by username and password, by IP,
or by certificates) and usually privileged (no UBM checks). On the retrieval side, SMTP is
not capable of handling these tasks sensibly. Instead, POP3 and IMAPv4 are used. POP3 is a
deposit box for email where a device fetches the mail and stores it locally. This is commonly
used for automated processing of mails, but presently no longer adequate, as the same user
owns multiple devices. IMAPv4 offers to organize emails on the server. This allows a user to
have the same folder structure of mails in a synchronized manner on all devices.

For an ideal implementation, we have done the following: Organized our MessageVortex mails
in a separate account. The account is accessed through a local proxy relaying our “ordinary
outgoing mails” through the SMTP server of our regular provider and all MessageVortex
related traffic through the provider of our MessageVortex mailbox. Keeping the two mailboxes
separate is sensible and important, as we will see in part VI. The housekeeping on the account
used for MessageVortex is caried out automatically and in a sensible way, comparable to a
human (e.g., handling drafts, sent, and trash bin folders sensibly and keeping all mails in
a flat structure by deleting old emails from time to time). The proxy transparently merges
the mails from the regular and the MessageVortex account. This proxy mechanism keeps the
messages apart on the transport layer but offers a unified look at the data.

We were unable to find any scientific data regarding what type of traffic or attachment is
common on the Internet. Therefore, we analyzed the email logs (SMTP) of a mail provider.
We scanned 500K emails for attachment properties after the spam elimination queue. 16.5%
of all scanned messages had an attachment. The top 20 attachment types distributions are
shown in table 15.1.

Type %
image/jpeg 27.4
application/ms-tnef 13.7
image/png 13.3
application/pdf 10.7
image/gif 7.4
application/x-pkcs7-signature 5.4
message/rfc822 7.0
application/msword 3.1
application/octet-stream 3.0
application/pkcs7-signature 2.3
application/vnd.. . . .wordprocessingml.document 1.4
message/disposition-notification 1.1
application/vnd.ms-excel 0.8
application/vnd.. . . .spreadsheetml.sheet 0.6
application/zip 0.5
application/x-zip-compressed 0.5
image/pjpeg 0.4
application/pkcs7-mime 0.4
video/mp4 0.4
text/calendar 0.4

Table 15.1: Distribution of top 20 attachment types.

As expected, the number of images within mail was very high (≈ 50%). Unfortunately, we
were unable to analyze the content of ms-tnef attachments retrospectively. It seems that

102 CHAPTER 15. TRANSPORT LAYER IMPLEMENTATION

based on these figures, information hiding within images in email traffic is a good choice.

We worked with F5 blending into jpeg images for our implementation, as this choice seemed
to undermine credible content based on table 15.1.

In our current implementation, the housekeeping part was skipped. Instead, we just fetched
the newly arrived messages and transferred them to local storage. The email presented to
the client is provided by a local IMAP server. The persistence of these messages is not yet
implemented.

15.3 Implementation of an XMPP Transport Layer

The XMPP protocol (formerly called Jabber, as specified in [138]) is natively not capable of
transferring anything but text messages. Unlike email, XMPP is capable of true end-to-end
signing and object encryption without solving the initial trust problem. While we may use
end-to-end encryption for additional security, relying on this feature is not sensible as we
would put trust into the security features of an intermediate node. This would effectively
violate RQ3 (zero trust) requirement. We decided to use the extension defined in [142] to
transfer our messages, as it is simple and reliable.

To transfer a VortexMessage, we could embed a MIME message just as with SMTP. While
this would be technically feasible, the usage of MIME is not common and even discouraged.
Instead, the inner structure of an XMPP message relies on XML.

XMPP has an improvment process based on XEPs. For including binary content such as
attachments in messages multiple XEPs exists. Table 15.2 shows all idenified candidates.

Name Status (as of 06-2020) Purpose

XEP-0047: In-band bytestreams [79] Final Standard Allows sending chunked, base64 encoded data within the Jabber connections.

XEP-0066: Out of Band Data [141] Draft Standard Allows sending URIs of remotely hosted binary data.

XEP-0096: SI File Transfer [162] Depreciated (ref. XEP-0234) Improvement of [141] allowing to send metadata and alternative URIs

XEP-0135: File Sharing [140] Deferred (inactive) Inband or out-of-band file discovery and referral service. May be used in conjunction
with FTP, HTTP, SCP, or [162].

XEP-0231: Bits of binary [142] Draft Standard Allows sending inband small unchunked files and referring within the message similarly
to [102].

XEP-0234: Jingle File Transfer [143] Deferred (inactive) Based on [98] allowing out-of-band content negotiation of complex data streams

Table 15.2: Overview of XEPs related to transporting binary data.

Relevant documents have either reached the level standard, draft standard, or were deferred
due to inactivity. We used “XEP-0231: Bits of binary” [142] for our protocol. It is simple to
implement as a transport layer, used in many clients (e.g., Prosody, Pigdin, or CoyIM), and
already a draft standard minimizing the risk of using later deprecated technology. As this
XEP is a client-only XEP, a node may use any XMPP server regardless of any additional
support for XEP-0135.

Embedding works the same as with email with the same supported blending options. In-
stead of searching all attachments, we just search through all data objects for relevant
VortexMessages.

The blending layer may generate decoy messages analog to the messages generated in the
case of email. Some adoptions in terms of texts might be advisable.

103

15.4 Distributed Configuration andRuntime Store of Pro-
cessing Content

A distributed storage is advisable if it works as a reliable service. This is why we defined
ASN.1 structures for all elements kept in memory as shown in listing 1. Wisely applied,
they may be used to store in a transport storage for access of a redundant set of devices, all
maintaining the same set of data.

1 −− S t a t e s r e f l e c t e d :
2 −− Tuple () = Val () [v a l l i d i t y ; a l l o w e d o p e r a t i o n s]
3 −− { S t o r e }
4 −− − Tuple (i d e n t i t y)= Val (messageQuota , t r a n s f e r Q u o t a ,
5 −− sequence o f R o u t i n g b l o c k s f o r E r r o r Message
6 −− Rout ing) [v a l i d i t y ; Requested a t c r e a t i o n ; may
7 −− be extended upon r e q u e s t] { i d e n t i t y S t o r e }
8 −− − Tuple (I d e n t i t y , S e r i a l)= maxReplays [’ v a l i d ’ from
9 −− I d e n t i t y B lock ; from F i r s t I d e n t i t y B lock ; may

10 −− on ly be reduced] { I d e n t i t y R e p l a y S t o r e }
11
12 MessageVortex −N o n P r o t o c o l B l o c k s DEFINITIONS
13 EXPLICIT TAGS : : =
14 BEGIN
15 IMPORTS P r e f i x B l o c k , InnerMessageBlock ,
16 Rout ingBlock ,
17 maxWorkspaceID
18 FROM MessageVortex −Schema
19 UsagePer iod , NodeSpec , B l end ingSpec
20 FROM MessageVortex −H e l p e r s
21 AsymmetricKey
22 FROM MessageVortex −Cipher s
23 Requi rementBlock
24 FROM MessageVortex −Requi rements ;
25
26 −− maximum s i z e o f t r a n s f e r quota i n b y t e s o f an
27 −− i d e n t i t y
28 maxTransferQuota INTEGER : : = 4294967295
29 −− maximum # o f messages quota i n messages o f an
30 −− i d e n t i t y
31 maxMessageQuota INTEGER : : = 4294967295
32
33 −− do not use t h e s e b l o c k s f o r p r o t o c o l encod ing
34 −− (i n t e r n a l on ly)
35 VortexMessage : : = SEQUENCE {
36 p r e f i x CHOICE {
37 p l a i n [1 0 0 1 1] P r e f i x B l o c k ,
38 −− c o n t a i n s p r e f i x e n c r y p t e d with r e c e i v e r s
39 −− p u b l i c key
40 e n c r y p t e d [1 0 0 1 2] OCTET STRING
41 } ,
42 innerMessage CHOICE {
43 p l a i n [1 0 0 2 1] InnerMessageBlock ,
44 −− c o n t a i n s i n n e r message e n c r y p t e d with
45 −− Symmetric key from p r e f i x

46 e n c r y p t e d [1 0 0 2 2] OCTET STRING
47 }
48 }
49
50 MemoryPayloadChunk : : = SEQUENCE {
51 i d INTEGER (0 . . maxWorkspaceID) ,
52 pay load [1 0 0] OCTET STRING ,
53 v a l i d i t y UsagePer iod
54 }
55
56 I d e n t i t y S t o r e : : = SEQUENCE {
57 i d e n t i t i e s SEQUENCE (SIZE (0 . . 4 2 9 4 9 6 7 2 9 5))
58 OF I d e n t i t y S t o r e B l o c k
59 }
60
61 I d e n t i t y S t o r e B l o c k : : = SEQUENCE {
62 v a l i d UsagePer iod ,
63 messageQuota INTEGER (0 . . maxMessageQuota) ,
64 t r a n s f e r Q u o t a INTEGER (0 . . maxTransferQuota) ,
65 −− i f omi t ted t h i s i s a node i d e n t i t y
66 i d e n t i t y [1 0 0 1] AsymmetricKey OPTIONAL ,
67 −− i f ommited own i d e n t i t y key
68 nodeAddress [1 0 0 2] NodeSpec OPTIONAL ,
69 −− Conta ins the i d e n t i t y o f the owning node ;
70 −− May be ommited i f l o c a l node
71 nodeKey [1 0 0 3] SEQUENCE OF AsymmetricKey
72 OPTIONAL ,
73 r o u t i n g B l o c k s [1 0 0 4] SEQUENCE OF Rout ingB lock
74 OPTIONAL ,
75 r e p l a y S t o r e [1 0 0 5] I d e n t i t y R e p l a y S t o r e ,
76 r e q u i r e m e n t [1 0 0 6] Requi rementBlock OPTIONAL
77 }
78
79 I d e n t i t y R e p l a y S t o r e : : = SEQUENCE {
80 r e p l a y s SEQUENCE (SIZE (0 . . 4 2 9 4 9 6 7 2 9 5))
81 OF I d e n t i t y R e p l a y B l o c k
82 }
83
84 I d e n t i t y R e p l a y B l o c k : : = SEQUENCE {
85 i d e n t i t y AsymmetricKey ,
86 v a l i d UsagePer iod ,
87 r e p l a y s R e m a i n i n g INTEGER (0 . . 4 2 9 4 9 6 7 2 9 5)
88 }
89
90 END

Listing 1: Definition of the structures related to a distributed storage.

The configuration should be stored sensibly in the transport storage to match regular usage
patterns. A suitable storage may be organized as follows:

• All configuration items are blended with F5 and protected by a key phrase to be en-
crypted with an appropriate KDF.

• The draft folder contains one draft message with the current, short-living configuration.

• A long-living configuration is written to draft and then moved to the “sent items” folder.

• A configuration is first fetched from the drafts folder, then the first config object of the
“sent items” folder is fetched.

• All items in the sent folder are deleted after a defined timespan (e.g., 30 days). Items not
yet expired are rewritten into a new config object into the sent folder before deletion.

104 CHAPTER 16. BLENDING LAYER IMPLEMENTATION

16 Blending Layer Implementation

16.1 Embedding Spec

We always embed VortexMessages as attachments in SMTP and XMPP messages.

The embedding supports some properties. A receiving host chooses the supported properties.
We describe valid properties by the blending specification in listing 2.

1 p la inEmbedding = " (" p l a i n : " <# B y t e s O f f s e t > [, <# B y t e s O f f s e t >] ∗ ")
2 F5Embedding = " (F5 : " < pas swordSt r ing >[, < PasswordSt r ing >] ∗ ") "

Listing 2: Definition of the embedding specs.

Both specifications allow embedding of a VortexMessage and are described in the following
section. A byte stream is extracted in both cases consisting of a prefix block containing the
peer key Kpeero immediately followed by the symmetrically encrypted InnerMessageBlock
as described in listing 3. The string is not necessarily correctly terminated. The presence of
a valid PrefixBlock signals an existing VortexMessage on the blending layer. That way, we
ensure that the size of a potential message leaks its presence. To detect the presence of a
VortexMessage, the host’s private key K−1

hosto
for decoding the message is required.

1 P r e f i x B l o c k : : = SEQUENCE {
2 v e r s i o n [0] INTEGER OPTIONAL ,
3 key [2] SymmetricKey
4 }
5
6 InnerMessageB lock : : = SEQUENCE {
7 padding OCTET STRING ,
8 p r e f i x CHOICE {
9 p l a i n [1 1 0 1 1] P r e f i x B l o c k ,

10 −− c o n t a i n s p r e f i x e n c r y p t e d with r e c e i v e r s
11 −− p u b l i c key
12 e n c r y p t e d [1 1 0 1 2] OCTET STRING
13 } ,
14 header CHOICE {
15 −− debug / i n t e r n a l use on ly
16 p l a i n [1 1 0 2 1] HeaderBlock ,
17 −− c o n t a i n s e n c r y p t e d i d e n t i t y b l o c k

18 e n c y r p t e d [1 1 0 2 2] OCTET STRING
19 } ,
20 −− c o n t a i n s s i g n a t u r e o f I d e n t i t y [as s t o r e d i n
21 −− HeaderBlock ; s i g n e d unencrypted HeaderBlock wi thout
22 −− Tag]
23 i d e n t i t y S i g n a t u r e OCTET STRING ,
24 −− c o n t a i n s r o u t i n g i n f o r m a t i o n (nex t hop) f o r the
25 −− p ay l oa d s
26 r o u t i n g [1 1 0 0 1] CHOICE {
27 p l a i n [1 1 0 3 1] Rout ingBlock ,
28 −− c o n t a i n s e n c r y p t e d r o u t i n g b l o c k
29 e n c y r p t e d [1 1 0 3 2] OCTET STRING
30 } ,
31 −− c o n t a i n s the a c t u a l pay load
32 pay load SEQUENCE (SIZE (0 . . maxPayloadBlks))
33 OF OCTET STRING
34 }

Listing 3: Definition of the outer message blocks.

16.1.1 Extraction of the Blended Message

In this section, we describe the extraction of a VortexMessage by the blending layer. We
describe plain embedding which allows a detectable yet unreadable message, including the
chunking applied to minimize detection. Furthermore, we describe the more elaborated
method of using F5 blending, which results in undetectable messages at the cost of roughly
eight times higher protocol overhead.

16.1.2 Plain Embedding

In this section we explain plainEmbedding and how VortexMessages with plainEmbedding
may be extracted. This embedding is mainly suitable for simple, observable message trans-

105

feral.

The plainEmbedding is a simple embedding replacing parts of the original file with the
content of the VortexMessage. To maintain the header information, we introduced an offset
as a set of fixed values. Plain embedding is easily detectable. While offset and chunking may
allow us to maintain a valid file structure, the file’s original content is normally destroyed.
We use plain embedding mainly for our experiments. We used a specialized blending layer for
better readability using unchunked, plain embedding with an offset of 0. The decoy message
is the ASN.1 block representation of the encoded block. The chosen encoding simplified to
see the inner workings of the protocol. For production use, we apply F5 embedding with a
generated payload. The blending layer’s current implementation employing plain embedding
is not suitable for production use as the messages remain identifiable or suspicious.

16.1.2.1 Chunking of Plain-Embedded Messages

In this section, we describe the chunked embedding into plain messages. Chunking is carried
out by pre-pending two numeric values to a data chunk. The first number (modulo the
remaining number of bytes of the file) reflects the chunk’s size immediately following the
second value. The second value (again modulo the same number) reflects the number of
bytes to be skipped after the chunk for reaching the next header.

Each value is encoded in one to four bytes forming an integer value. The first seven bits are
the least significant bits of the value. If the eight-bit is set, we signal an additional relevant
octet. The second and third byte (if any) are interpreted equivalently. The fourth byte is
always interpreted without any signal bit. Instead, the full eight bits are used as the most
significant bit in that case. All bits collected together are interpreted as an integer value.
This value is taken modulo the remaining bytes of the file, starting with the first byte of the
first header value. The chain formed by these headers has no terminator and may surpass
the file end.

The byte layout is chosen so that any byte sequence, from two to eight bytes, forms a valid
chunk header. The lack of termination guarantees that no information leaks through the
interpretation of any header.

Table 16.1 shows some valid chunking header bytes and their interpretation as offset value
(without the modulo). Listing 4 shows an implementation of the algorithm.

1 long i = 0 ;
2 unsigned char b = 0 ;
3 char m;
4 char c = 0 ;
5 do {
6 b= getNextByte () ;
7 i f (c <3) {
8 m = 1 2 7 ;
9 } e l se {

10 m = 2 5 5 ;
11 }
12 i = i | (long) ((m & b) << (7 ∗ c)) ;
13 c=c + 1 ;
14 p r i n t f (" got ␣ 0 x%02x ; ␣ new ␣ v a l u e ␣ i s ␣ %d ␣ (byte :% d) \ n " , b , i , c) ;
15 } while ((c < 4) && ((b & 1 2 8) = = 1 2 8)) ;
16 p r i n t f (" RESULT :% d \ n \ n " , i) ;

Listing 4: Reference implementation for extraction of a chunking value in C.

When plain-embedding messages, we have the problem that most of the files have recurring
logical structures. Such structures should not be broken. Broken files raise suspicion as

106 CHAPTER 16. BLENDING LAYER IMPLEMENTATION

Bytes Results

0x83 0x0a 1283

0x81 0x00 1

0xfb 0x01 251

0x00 0

0x77 119

0xaa 0xaa 0xaa 0xaa 357209386

0xff 0xff 0xff 0xff 536870911

Table 16.1: Example interpretation of bytes in offset values.

they are no longer displayable. Thus, we have to avoid breaking logical file structures and
concentrate on structureless portions of the file when embedding.

16.1.3 Implementation of F5 Blending

In this section, we introduce the implementation of F5 blending. It is a more suitable
blending than the rather simple plainBlending discussed in the previous section. At the
same time, F5 is very old (2002 and renains unbroken. In the reference implementation of
F5 was a detectable unintentional double compression [52]. The authors of the reference
implementation fixed this issue [20], and we were unable to find newer breaches. Newer
derivates, such as nsF5 [58] or MSET [75], were proposed. However, we did not consider
these as candidates, as an appropriate reference implementation seemed to be unavailable.

F5 hides its information in JPEG, BMP, and GIF images by matrix-encoding its information
in the image data. According to [168], it has a capacity exceeding 13% of the steganograms’
size.

The implementation of F5 uses a “password” for the initialization of the random number
generator. Without this password, the extracted message is random. As a VortexMessage
is encrypted, we were unable to differentiate random output from a VortexMessagein our
analysis. Only decoding with the host key K−1

hosto
resulted in detecting a VortexMessage.

As shown in listing 2, we publish this password and keep detection to the decoding part of
our blending layer. In theory, we could have kept this password specific to the eID. However,
this would increase the decoding complexity, and the password would be needed by the
node blending the content, which would leak a synonym to the eID used on the next host to
the current host.

16.2 Message Processing by the Blending Layer

If a VortexMessage is detected, the pre f ix with the sender key Ksendero is decrypted to decrypt
the header block header. Verifying the identity signature (which may be achieved even
before decrypting the header block) guarantees that the original sender is the owner of the
eID. With the help of the accounting layer, the VortexMessage is authorized for processing.

107

Depending on the current quota (messages) and the identity status (temporary or established),
further processing by the routing layer is acknowledged. For an overarching description of
the whole message, processing see section 17.2.

16.3 Decoy Content Generation

The decoy content of a message is an important part of the MessageVortex system. It creates
meaningful content for the traffic to be hidden within.

Using F5 or similar mechanisms for blending, we decided to ensure that our content does
not rquire to pass a Turing test. Normal email conversations are two-way and have many
properties such as references to previous messages and similar contexts. In order not to
fall into such traps, we use common machine-generated one-way messages with generated
images. Examples of such messages are password recovery requests with Gravatars or
monitoring messages with generated graphs (such as current running processes on a system).
Such messages are easy to generate in various sizes and are machine-generated for obvious
reasons.

To make it more difficult for an attacker to identify the context of messages, the sending
address on the transport media should not be equal to the receiving address. this makes the
generation of interaction graphs much more difficult, as we will see in section 27.1.2.7.

17 Routing Layer Implementation
In this chapter, we describe the routing layer as our main workhorse for processing VortexMes-
sages. The routing layer keeps a workspace for each eID and discards old or unused entries.
When receiving routing blocks, it processes those and generates new messages. Furthermore,
we shed light on some decisions specific to our implementation, such as encoding formats or
message layout.

17.1 ASN.1 DER-Encoding Scheme for VortexMessages

Originally, we implemented the protocol as XML-encoded messages. This encoding however
had several flaws. First, the huge amount of encrypted data within the document made
the messages bulky and, at the same time, lose one of its main strengths: readability for
humans. The encoding required for binary data caused messages to increase ion size due to
their onionized structure.

Furthermore, some XML features, such as external entities or the possibility to define tags,
introduced a series of new possible attacks such as DoS attacks (e.g., a Billion Laughs) or
information-stealing attacks (e.g., XXE attacks). Furthermore, XML structures are difficult to
sign and have many possible ways of layouting data.

To counter these disadvantages, we re-implemented our client with ASN.1-based DER-
encoding. This type of encoding fits well with encrypted structures and is commonly used
for related tasks such as key storage or signing messages and certificates.

DER-encoding of ASN.1 structures even enables us to foresee the content of an encoded
message down to each bit. This is important as it enables in-depth analysis of message flows,

108 CHAPTER 17. ROUTING LAYER IMPLEMENTATION

as we will see in section 22.4.

ASN.1 offers three common encoding schemes:

• BER (Basic Encoding Rules)

• CER (Canonical Encoding Rules)

• DER (Distinguished Encoding Rules)

As DER and CER are a subset of BER being more strictly defined, we decided to go with DER
as this ruleset was available in the library used.

17.2 The Processing of Messages

In this section, we focus on the processing of messages. Messages are processed either upon
their arrival or if a routing block is processed. The processing of a routing block is typically
relative to the delivery of the message containing the routing block. As an immediate result
of processing a routing block, a new message is generated for a routing block or a message
for the current node.

17.2.1 Workspace Layout

The workspace itself contains payload blocks assigned to workspace IDs. The ID space is
divided into three parts as shown in table 17.1.

ID Purpose

0 Message for local delivery

1 - 127 Payload block of current routing block

128 - 32766 Reserved

32767 Reply block

32768 - 65535 Payload block in workspace

Table 17.1: Workspace layout of IDs.

17.2.2 Processing of Incoming Messages

In this section, we focus on the operations carried out by a routing layer on each message
extracted by the blending layer.

A message extracted by the blending layer is passed to the routing layer for further processing.
The source of the message (e.g., protocol of the message or sender address) is irrelevant and
discarded by the blending layer.

The first step of processing is the extraction of the identity. The identity can be found in the
header block (see listing 5 identityKey) and then verified with the signature identityS ignature
(listing 3)

If verification is successful, the message is authenticated but not necessarily ready for further
processing. Unless the header contains an identity creation request, the next step is then the

109

1 HeaderBlock : : = SEQUENCE {
2 −− P u b l i c key o f the i d e n t i t y r e p r e s e n t i n g t h i s
3 −− t r a n s m i s s i o n
4 i d e n t i t y K e y AsymmetricKey ,
5 −− s e r i a l i d e n t i f y i n g t h i s b l o c k
6 s e r i a l INTEGER (0 . . m a x S e r i a l) ,
7 −− number o f t imes t h i s b l o c k may be r e p l a y e d
8 −− (Tup le i s i d e n t i t y K e y , s e r i a l w h i l e
9 −− UsagePer iod o f b l o c k)

10 maxReplays INTEGER (0 . . maxNumOfReplays) ,
11 −− subsequent B l o c k s a r e not p r o c e s s e d b e f o r e
12 −− v a l i d t ime .
13 −− Host may r e j e c t too long r e t e n t i o n .
14 −− Recomended v a l i d i t y s u p p o r t >=1Mt .
15 v a l i d UsagePer iod ,
16 −− c o n t a i n s the MAC−Algor i thm used f o r s i g n i n g
17 s i g n A l g o r i t h m MacAlgorithmSpec ,
18 −− c o n t a i n s a d m i n i s t r a t i v e r e q u e s t s such as
19 −− quota r e q u e s t s
20 r e q u e s t s SEQUENCE
21 (SIZE (0 . . maxNumOfRequests))
22 OF HeaderRequest ,
23 −− Reply Block f o r the r e q u e s t s
24 r e q u e s t R e p l y B l o c k RoutingCombo OPTIONAL ,
25 −− padding and i d e n t i t i f i e r r e q u i r e d to s o l v e
26 −− the c r y p t o p u z z l e
27 i d e n t i f i e r [1 2 2 0 1] P u z z l e I d e n t i f i e r OPTIONAL ,
28 −− T h i s i s f o r s o l v i n g c r y p t o p u z z l e s
29 proofOfWork [1 2 2 0 2] OCTET STRING OPTIONAL
30 }
31
32 Rout ingB lock : : = SEQUENCE {
33 −− c o n t a i n s the routingCombos
34 r o u t i n g [3 3 1] SEQUENCE
35 (SIZE (0 . . maxRout ingBlks))
36 OF RoutingCombo ,
37 −− c o n t a i n s the mapping o p e r a t i o n s to map
38 −− p ay l oa d s to the workspace
39 mappings [3 3 2] SEQUENCE
40 (SIZE (0 . . maxPayloadBlks))
41 OF MapBlockOperation ,
42 −− c o n t a i n s a r o u t i n g b l o c k which may be used
43 −− when send ing e r r o r messages back to the quota
44 −− owner t h i s r o u t i n g b l o c k may be cached f o r

45 −− f u t u r e use
46 r e p l y B l o c k [3 3 2] SEQUENCE {
47 murb RoutingCombo ,
48 maxReplay INTEGER ,
49 v a l i d i t y UsagePer iod
50 } OPTIONAL
51 }
52
53 RoutingCombo : : = SEQUENCE {
54 −− c o n t a i n s the p e r i o d when the pay load shou ld
55 −− be p r o c e s s e d .
56 −− Router might r e f u s e too long queue r e t e n t i o n
57 −− Recommended s u p p o r t f o r r e t e n t i o n >=1h
58 minProcessTime INTEGER
59 (0 . . maxDurat ionOfProcess ing) ,
60 maxProcessTime INTEGER
61 (0 . . maxDurat ionOfProcess ing) ,
62 −− The message key to e n c r y p t the message
63 peerKey [4 0 1] SEQUENCE
64 (SIZE (1 . . maxNumOfReplays))
65 OF SymmetricKey OPTIONAL ,
66 −− c o n t a i n s the nex t r e c i p i e n t
67 r e c i p i e n t [4 0 2] Blend ingSpec ,
68 −− P r e f i x B l o c k e n c r y p t e d with message key
69 mPre f i x [4 0 3] SEQUENCE
70 (SIZE (1 . . maxNumOfReplays))
71 OF OCTET STRING OPTIONAL ,
72 −− P r e f i x B l o c k e n c r y p t e d with sender key
73 c P r e f i x [4 0 4] OCTET STRING OPTIONAL ,
74 −− HeaderBlock e n c r y p t e d with sender key
75 header [4 0 5] OCTET STRING OPTIONAL ,
76 −− Rout ingB lock e n c r y p t e d with sender key
77 r o u t i n g [4 0 6] OCTET STRING OPTIONAL ,
78 −− c o n t a i n s i n f o r m a t i o n f o r b u i l d i n g messages
79 −− (when used as MURB)
80 −− ID 0 denotes o r i g i n a l / l o c a l message
81 −− ID 1−maxPayloadBlks denotes t a r g e t message
82 −− ID 32767 denotes a s o l i c i t e d r e p l y b l o c k
83 −− 32768 −maxWorkspaceId shared workspace f o r a l l
84 −− b l o c k s o f t h i s i d e n t i t y)
85 assembly [4 0 7] SEQUENCE
86 (SIZE (0 . . maxAssembly Ins t r))
87 OF Pay loadOperat ion ,
88 −− o p t i o n a l f o r s t o r a g e o f the a r r i v a l t ime
89 v a l i d i t y [4 0 8] UsagePer iod OPTIONAL

Listing 5: Definition of the inner message blocks.

authorization for further processing. For proper authentication, the following preconditions
must be met:

• Message must be outside a replay blocking interval

• The identity is not temporary (section 17.3.1)

If the identity is not temporary, header requests are executed upon authorization. The only
header request executed on a temporary eID is a createIdentity request.

As soon as the header requests are executed, the content is processed. The routing block
operations are added to the workspace, and the mapping operations remain in the routing
combo.

17.2.3 Processing of Outgoing Messages

In this section, we focus on the creation of new messages sent to the next hop router. The
message creation is triggered in a timed manner based on the content of the RoutingCombo
and then passed to the blending layer for blending.

The sending of a message is triggered by a routing block in the workspace, as shown in
fig. 17.2. The assembly instructions are processed to collect the payload blocks. Then the
encryption is applied to the message and passed on to the blending layer for processing.

110 CHAPTER 17. ROUTING LAYER IMPLEMENTATION

All mapping operations are then carried out. If a payload has not yet been calculated,
appropriate operations in the workspace are searched and executed to create the missing
payloads. If a payload is not created successfully, the payload in the message is omitted.

The message is assembled by building the InnerMessageBlock with cPre f ix, header, routing
from the routing combo and the payloads generated (see fig. 13.4 and fig. 13.5). This block is
DER-encoded and then encrypted with peerKey. The resulting octet-stream is prepended
with mPre f ix from the routing combo and then passed to an appropriate blending layer for
the requested transport using blendingS pecc.

The resulting message is a valid VortexMessage, but the generating node has no relevant
knowledge about the message or its content except for the recipient address.

17.2.4 Implementation of Operations

In this section, we focus on the implemented operations. The operations outlined in sec-
tion 13.2.6 were implemented in exactly the described manner. Additionally, we implemented
a mapping operation, copying the content of one payload ID to another one. The implemen-
tation and its test showed some weaknesses related to the platform and implementation
specifics, which are outlined further.

For our implementation, we used a HashMap to keep a list of all operations. The key of the
HashMap is the output ID of the resulting operations. Instead of proactively executing all
operations to obtain all possible payload IDs, we build a dependency tree of all required pre-
requisites. A caching structure allows us to efficiently work with the results of all operations.
If an operation expires, all cached output of the respective operations is invalidated. If a
payload block expires or is overridden, all outputs taking input from this payload directly or
indirectly are invalidated. This allows us to keep a very efficient and compact representation
of the payload space, not wasting any memory without necessity.

The mapping operation became necessary when defining the system of specialized IDs as
outlined in table 17.1. This usage of specialized workspace IDs makes the mapping of values
from one ID to another one a necessity. While theoretically feasible in a two-step operation
by applying an operation and its reverse, the mapping operation is far more efficient.

Some operations showed weaknesses. The splitPayload Operation was mathematically
well-designed. Due to differences in floating-point calculations (FP ops) when carried out on
ARM- and AMD-based platforms, the result may differ when working with this operation.
As an immediate result, we defined that all FP ops must be carried out as specified in [1].
This allows us to have the same output of the splitting operation on all platforms and thus a
constant result. Luckily in Java, such behavior may be achieved by applying the s t r i c t f p
keyword, which saved a lot of troubles and work.

Another problem that arose in practice was that applying a Galoise field (GF) in the
addRedundancy and removeRedundancy operations different to 8 or 16 cause practical prob-
lems due to their resulting sizes. To simplify applying the transformation for the average
computer working with 8 bits per byte only, we added a possibility for the node to signal
which sizes of GFs are supported. This enables an implementation to only focus on GF(28)
and GF(216).

A GF of size not equal to 8 or 16 requires the system to realign the data before processing,
then applying the GF operations and converting it back to realign with 8-bit boundaries.

111

17.3 Handling Requests

In this section, we focus on handling requests and the replies to requests required by the
protocol. As the replies are required but need to have the same properties as normal messages,
we needed routing blocks for replies.

In general, any host may send a request to any other host. These requests normally involve
the requirement for sender anonymity. The request itself is included in the HeaderBlock .
The reply block is provided in requestReplyBlock.

The identified requests are shown in listing 6. The tagging of the requests is necessary to
identify the request provided.

1 HeaderRequest : : = CHOICE {
2 i d e n t i t y [0] H e a d e r R e q u e s t I d e n t i t y ,
3 c a p a b i l i t i e s [1] H e a d e r R e q u e s t C a p a b i l i t y ,
4 messageQuota [2] HeaderRequest IncreaseMessageQuota ,
5 t r a n s f e r Q u o t a [3] H e a d e r R e q u e s t I n c r e a s e T r a n s f e r Q u o t a ,
6 quotaQuery [4] HeaderRequestQuota ,
7 nodeQuery [5] HeaderRequestNodes ,
8 r e p l a c e [6] H e a d e r R e q u e s t R e p l a c e I d e n t i t y
9 }

Listing 6: Definition of a request.

The routing blocks for replies must differentiate from normal routing blocks as they may
otherwise be misused as ordinary sending blocks. A reply block for the request should always
map to payload ID 32767, whereas a reply block for a normal user (to keep sender anonymity)
should always map in workspace ID 0. That way, it is impossible to misuse reply blocks for
normal messages.

A reply is sent as a special message block and must be mapped to workspace ID 128. A
VortexNode may accept a special block delivered to ID 0, but such behavior should never be
assumed. Figure 7 shows the definition of a reply. A reply is expressed in a special block.
This special block contains a status of the request, which is either a success or a failure and
may provide additional information such as the request’s outcome.

1 S p e c i a l B l o c k : : = CHOICE {
2 c a p a b i l i t i e s [1] R e p l y C a p a b i l i t y ,
3 r e q u i r e m e n t [2] SEQUENCE (SIZE (1 . . 1 2 7))
4 OF RequirementBlock ,
5 quota [4] ReplyCurrentQuota ,
6 nodes [5] ReplyNodes ,
7 s t a t u s [9 9] S t a t u s B l o c k
8 }
9

10 S t a t u s B l o c k : : = SEQUENCE {
11 code StatusCode
12 }
13
14 StatusCode : : = ENUMERATED {
15
16 −− System messages
17 ok (2 0 0 0) ,
18 q u o t a S t a t u s (2 1 0 1) ,
19 p u z z l e R e q u i r e d (2 2 0 1) ,
20

21 −− p r o t o c o l usage f a i l u r e s
22 t r a n s f e r Q u o t a E x c e e d e d (3 0 0 1) ,
23 messageQuotaExceeded (3 0 0 2) ,
24 requestedQuotaOutOfBand (3 0 0 3) ,
25 ident i tyUnknown (3 1 0 1) ,
26 messageChunkMissing (3 2 0 1) ,
27 m e s s a g e L i f e E x p i r e d (3 2 0 2) ,
28 puzzleUnknown (3 3 0 1) ,
29
30 −− c a p a b i l i t y e r r o r s
31 macAlgorithmUnknown (3 8 0 1) ,
32 symmetricAlgorithmUnknown (3 8 0 2) ,
33 asymmetricAlgorithmUnknown (3 8 0 3) ,
34 prngAlgorithmUnknown (3 8 0 4) ,
35 m i s s i n g P a r a m e t e r s (3 8 2 0) ,
36 badParameters (3 8 2 1) ,
37
38 −− Mayor hos t s p e c i f i c e r r o r s
39 h o s t E r r o r (5 0 0 1)
40 }

Listing 7: Definition of a request.

112 CHAPTER 17. ROUTING LAYER IMPLEMENTATION

17.3.1 Requesting a new Ephemeral Identity

One of the main requests for the protocol is the request for generating a new ephemeral
identity. The goal of this operation is to create a non-hijackable workspace on a node while
remaining anonymous. If having multiple eIDs on the same host, they must be unlinkable.
Furthermore, it should be difficult for an adversary to flood a VortexNode with workspace
requests to cause a denial-of-service (DoS) attack.

1 H e a d e r R e q u e s t I d e n t i t y : : = SEQUENCE {
2 p e r i o d UsagePer iod
3 }

Listing 8: Definition of an identity request.

Requesting a new identity is easy. The only information required is the lifetime requested
(see listing 8). A VortexNode may carry out any of the following operations:

• Deny the request (even without an error message).

• Accept the request without a “puzzle.”

• Accept the request under the condition a “puzzle” is solved.

The denial of a request does not necessarily lead to an error message. A VortexNode sends
only an error message if the node is a public node. All other nodes (stealth and hidden; see
sectionsec:vortexNodeTypes) do not send an error message to not leak their existence.

If a request is accepted, the VortexNode replies either with an “ok” or a “puzzle required”
status.

1 Requi rementBlock : : = CHOICE {
2 p u z z l e [1] Requ i r ementPuzz l eRequ i r ed ,
3 payment [2] RequirementPaymentRequired
4 }
5
6 R e q u i r e m e n t P u z z l e R e q u i r e d : : = SEQUENCE {
7 −− b i t sequence a t b e g i n n i n g o f hash from
8 −− the e n c r y p t e d i d e n t i t y b l o c k
9 c h a l l e n g e BIT STRING ,

10 mac MacAlgorithmSpec ,
11 v a l i d UsagePer iod ,
12 i d e n t i f i e r INTEGER (0 . . 4 2 9 4 9 6 7 2 9 5)

13 }
14
15 RequirementPaymentRequired : : = SEQUENCE {
16 account OCTET STRING ,
17 ammount REAL ,
18 c u r r e n c y Currency
19 }
20
21 Currency : : = ENUMERATED {
22 b t c (8 0 0 1) ,
23 eth (8 0 0 2) ,
24 ze c (8 0 0 3)
25 }

Listing 9: Definition of a requirement.

As currently supported puzzles, two possible answers are foreseen by the protocol:

• Solving a CPU-bound hash puzzle

• Paying a fee in a digital currency

The CPU-bound puzzle is a hash based. The VortexNode provides a bit string for the identity.
The header has to be resent so that the requested hash of the DER-encoded header starts
with the bit sequence provided. there are two ways of keeping track of these puzzles:

113

• Generating puzzles in a reproducible way
This is the more elegant way of puzzles. Instead of tracking the puzzles, we generate
the hash by applying the following function le f t(MAC(K1

identity| < host secret > | <
date and hour >), hourly complexity in bits). This method has positive and negatives
sides. On the positive side, we do not need to track all puzzles provided to identities.
Instead, we just check if a puzzle provided matches an appropriate challenge of the last
hours. This host cannot be flooded with identity creation requests as it does not need
to track the requests. Instead, it must keep a list of successful serials that requested
a quota increase, as there it would be possible to replay the request to increase the
quotas. This is not comparable to the costs for an attacker as we only have to keep a list
of integers where the PoW has been solved.

• Storing random puzzles during their validity time
This method is straightforward. It requires an entry in a table per puzzle only for the
lifetime considered.

The second approach has a great disadvantage: A DoS attack is feasible. Given the fact that
we need to store the key (1KB max), the date and time of expiry 4 bytes (epoch), and the bit
sequence (up to 8 bytes). This means that we require millions of requests to flood a host.
Since the keys do not need to be strong (an adversary does not intend to use them; it is only
a DoS attack), this attack is feasible with considerable effort. This is why we favor the first
approach.

17.3.2 Replacing an Existing Node Specification or Proving a Sender
Identity

As users tend to change transport layer addresses, keys might become insecure, or transport
services are no longer available, we need means of upgrading keys or replacing them with
newer transport addresses. This may be achieved with a HeaderRequestReplaceIdentity
request as shown in listing 10. This request allows in a cryptographically secured way to
exchange keys and transport endpoints by the respective owners.

1 H e a d e r R e q u e s t R e p l a c e I d e n t i t y : : = SEQUENCE {
2 r e p l a c e SEQUENCE {
3 o l d NodeSpec ,
4 new NodeSpec OPTIONAL
5 } ,
6 i d e n t i t y S i g n a t u r e OCTET STRING
7 }

Listing 10: Definition of an identity replace request.

By signing the request, the sender proves that he is in possession of the old key. By omitting
the new node specification, a user may bind an existing eID to a real-world identity. This is
useful for securing endpoint identities if required. However, such a secured identity should
only be used for endpoint messages and not for routing, as this would shorten the secured
path of the message.

A VortexNode may reply with a “quotaStatus” message if the node owner decides to assign a
different (possibly unlimited) quota to the identity.

114 CHAPTER 18. ACCOUNTING LAYER IMPLEMENTATION

17.3.3 Replacing an Existing Reply Block

For sender anonymity, a sender may provide a reply block for single or multiple uses (SURBS
and MURBS). These routing blocks use eIDs, which have by definition a limited lifespan. In
this section, we focus on the implementation details for requests replacing such reply blocks.

A routing block has a limited lifespan, which is directly limited by the eIDs involved. The
first expiring eID invalidates the block unless redundant paths are included. In this case,
only redundancy would be reduced. To keep a message intact, even if a reply block of an
anonymous sender expires, the sender may replace any existing reply block with a new
routing block.

In the case an owner wants to replace an existing routing block with a new one, it is sufficient
to send an empty message to the respective eID. Within the routing block, the sender provides
one or more new replyBlock replacing all old existing ones. As the header is signed by the
private key of the eIDs owner, this operation is safe.

18 Accounting Layer Implementation
The accounting layer tracks all operations allowed to a message. In this section, we list the
tasks fulfilled by the accounting layer and outline them precisely.

The accounting layer keeps a list of the following information:

• eID[]⟨expiry, pubKey, mesgsLe f t, bytesLe f t⟩

• Puzz[]⟨expiry, requestHeader, puzzle⟩
or
Puzz[]⟨dateAndHour, puzzleS izeNewIdentity, basePuzzleS izeQuta⟩

• Replay[]⟨expiry, serial, numberO f RemainingUsages⟩

The list of all eIDs is kept in the accounting layer together with their quotas and expiry. The
accounting layer triggers the deletion of the workspace assigned to it upon its expiry. Each
eID has assigned two quotas. The messageQuota limits the number of messages containing
payload blocks to be routed. This quota is measured upon the arrival of a message (inbound
only). The bytesLe f t quota is a sizing quota and is measured outbound. This quota is applied
to all outbound messages regardless of their content.

The puzz[] list with requestHeaders is only required if relying on random user puzzles.
This would lead to an implementation that is simple but may be flooded with eID re-
quests. The second list requires only an entry per hour. The number of entries is lim-
ited by the number of hours a puzzle is accepted. The puzzle is built by calculating
MAC

(︁
K1

eID|globalS ecret|dateAndHour), puzzleS izeNewIdentity
)︁
. That way, a DoS attack

by flooding the puzzle table is no longer feasible.

The last list is the list for replay protection Replay[]. This is a list of serials, and their
remaining usages is an effective replay protection. A serial is only allowed to be processed if
the serial has not reached the maximum number of replays. As a header block typically only
has a limited lifespan, this is a very short list. Flooding is not very effective as a host may

115

limit the number of entries in this list. The only identity suffering from that measure would
be the identity assigned to the serial as serials from this eID would suffer incomplete replay
protection and thus endanger its quotas.

In table 18.1, we show under what circumstances a reply to a header request should be sent.
The capitalized words MAY, MUST, SHOULD, and SHOULD NOT are used as defined in
RFC2119 [19].

aaaaaaaa
Request

Criteria unknown identity
cleartext

unknown identity
encrypted

expired identity
encrypted

known identity
encrypted

newIdentity SHOULD NOT MAY Invalid (Error) Invalid (Error)
queryPeer MUST NOT MUST NOT MAY MAY
queryCapability SHOULD NOT MAY MAY MUST
messageQuota MUST NOT MUST NOT MAY MUST
transferQuota MUST NOT MUST NOT MAY MUST

Table 18.1: Requests and the applicable criteria for replies.

19 Usability-Related Implementation Details
Usability is one of the foremost criteria for user acceptance. As we have no chance to create
a nice user interface competing with existing ones, we went for a different approach. We
use our VortexNode as an IMAP/SMTP proxy. That way, we can send with any email client
VortexMessages. To do so, we introduced an addressing scheme compatible with email and
the support of their clients without creating any collisions with the existing email address
schemes.

These schemes are discussed in the next section. Then, we address the problem of linking to
user agents and transparency issues.

19.1 Addressing and Address Representations

An endpoint always requires a public key and a transport endpoint. As we have no central
infrastructure, we need a defined way to exchange addresses. These addresses need to
be uniquely identifiable and have to work with clients. In this section, we focus on the
implementation details of such an address.

If we want to use common email or XMPP clients, we must support an address format
compatible with the client but which produces no collisions with ordinary addresses. Luckily,
experiments showed that clients are not very restrictive in the acceptance of addresses. Most
clients required either an at sign between two letters or, additionally, at least a dot in the
domain part of the address. [83] and [132] specify the format for email addresses and [138]
does the same for XMPP. For both formats, a double dot (“..”) in the local part is illegal.
Clients do not seem to catch this exception. We defined our addresses as follows.

For email:
1 l o c a l P a r t = < l o c a l p a r t o f address >
2 domain = <domain p a r t o f address >
3 ema i l = l o c a l P a r t "@" domain
4 keySpec = <BASE64 encoded AsymmetricKey [DER encoded] >
5 s m t p A l t e r n a t e S p e c = l o c a l P a r t " . . " keySpec " . . " domain " @ l o c a l h o s t "
6 smtpUrl = " vo r t ex smtp : / / " s m t p A l t e r n a t e S p e c]

116 CHAPTER 19. USABILITY-RELATED IMPLEMENTATION DETAILS

For XMPP:
1 l o c a l P a r t = < l o c a l p a r t o f address >
2 domain = <domain p a r t o f address >
3 r e s o u r c e P a r t = < r e s o u r c e p a r t o f the address >
4 j i d = l o c a l P a r t "@" domain [" / " r e s o u r c e P a r t]
5 keySpec = <BASE64 encoded AsymmetricKey [DER encoded] > ;
6 j i d A l t e r n a t e S p e c = l o c a l P a r t " . . " keySpec " . . "
7 domain " @ l o c a l h o s t " [" / " r e s o u r c e P a r t]
8 j i d U r l = " vortexxmpp : / / " j i d A l t e r n a t e S p e c]

This allows using of a regular client to host a VortexMessage endpoint address. To avoid
unintentional routing of an address to through a non-VortexNode, we defined “localhost” as
the general domain part. The local part in the email is restricted to 64 bytes, whereas XMPP
specifies 1024 bytes as the local part’s size limit. Our experiments showed, however, that
none of the clients enforce these limits.

The respective URLs are defined in the standard to provide a unified mean for URLs to be
properly identified by a system. This allows a unified usage of mechanisms such as QR codes
across all platforms.

19.2 Linking to Common User Agents

From an academic perspective, the protocol linking as a proxy is easy. Real-world implemen-
tation however showed many caveats. We will focus on these problems in this section and
note workarounds where possible.

When combining data on asynchronous message protocols, we always have two possibilities.
Either work as a transparent proxy for a single view or combine multiple sources. Another
option is always to create a local repository with the disadvantage that such a repository
may not be shared with other devices.

For all protocols, we have to mention that using the VortexNode as a transparent proxy is
not always feasible for two reasons. First, we must carry out a man in the middle (MITM)
attack when proxying outbound or inbound connection. If such connections are encrypted,
this is a problem due to the breach of the trust chain involved. Solving this in an enterprise
environment is easy, as we can control the trust store. Working with mobile operating systems
such as android or iOS, access to trust stores are complex and, under some circumstances,
even prohibited.

Another problem is that such MITM attacks are easily detected when employing DANE ([72,
41]) or similar technologies. Within all protocols, analyzed certificate-based authentication
is very uncommon. However, such authentication would break if we carry out a MITM.

When sending an email, we can use authenticated SMTP on the client submission ports. This
may be realized either as a transparent proxy or as a store and forward solution with very
few disadvantages. When working as store and forward, we have the disadvantage that in
case of networking failure, the node may delay or lose (in a worst-case scenario) the message
without the user knowing it as the client successfully sent the message. We developed an
easy workaround for this scenario: Our SMTP implementation binds on 127.0.0.1 only and
accepts a dummy password. Simultaneously, we build a second connection to the provider’s
SMTP channel and authenticate. As soon as the envelope is complete, we decide whether the
recipient is a VortexNode (easily identifiable by the address). If not, we send the envelope to
the providers SMTP connection and strictly forward from there on all traffic between the two.
If the recipient is a VortexNode, we use a pseudo blending layer that packs an appropriate
routing block and the plain text message as a single payload into a pseudo VortexMessage and

117

deliver this message to the routing layer. The routing layer then, unaware of the message’s
pseudo nature, handles the message. It completes the first encryption operation and applies
then the operations to send the message to all next hops with the appropriate routing blocks.

When receiving messages by mail, things quickly become more complex. For our experiments,
we used POP3 as a protocol. This protocol is somewhat similar to SMTP and allows normal
store and forward operation. This means that we may fetch mail from a central infrastructure.
This fetching is triggered by the fetching of the client, which is thus almost without delay.
As with POP3 mails are stored locally, we have no problems as the client fetches and stores
the mail. Considering IMAPv4, we have a several of very relevant differences. Unlike POP3,
IMAPv4 stores and organizes messages on the server. The main advantage is that due to the
central storage, multiple devices may access the messages simultaneously. Since all clients
use the same storage, a unified view is possible. Unfortunately, all attempts generating a
globally unique ID for messages failed so far, and client support for such a feature is sparse.
In an ideal world, we would have a unified view out of one or more MessageVortex transport
layer accounts and our regular mail, whereas the VortexMessages are stored in the respective
transport layer account and dynamically merged into the regular email store.

Such a store would have huge benefits compared to the current solution. It would allow uni-
fied storage and offer simultaneous access for multiple devices. The problems are numerous.
We need unified storage for configurations including eIDs and workspaces. Furthermore,
we need a lock to avoid concurrency issues with simultaneously running VortexNodes. The
unified view requires intelligence so that it is able to keep all VortexMessages on the transport
layer account, whereas ordinary emails are kept on the respective account. The housekeeping
of the transport layer account needs to be achieved in a credible way.

20 Efficiency-Related Implementation Details
In the following section, we focus on the storage management of VortexNodes. As they run
on mobile and similar devices, low resource consumption is essential for our system. We
mainly focus on memory and CPU consumption. Network bandwidth overhead and their
related problems are discussed in part VII.

20.1 Node Storage Management

In most mobile devices, storage is very limited. This applies to the disk storage but is
especially true for the RAM of such devices. Our protocol supports the minimization of
storage footprints in two ways.

1. Every node may minimize the storage footprint by signaling that only a small footprint
is possible through the capability block.

2. Every node may minimize the number of eIDs accepted.

The runtime portion of RAM required may be minimized as the concurrently required RAM
is limited to the event-triggered routing blocks, respectively their trigger blocks. Listing 11
defines two type of windows. The absolute time (AbsoluteUsagePeriod) denominates
the time interval the item is valid in an absolute UTC-based manner. The relative timing
(RelativeUsagePeriod) furthermore limits the validity window measured relative to

118 CHAPTER 20. EFFICIENCY-RELATED IMPLEMENTATION DETAILS

the time of arrival. The real validity time is formed as the intersection out of the two timings,
whereas both may be omitted by definitions.

1 UsagePer iod : : = CHOICE {
2 a b s o l u t e [2] Abso lu teUsagePer iod ,
3 r e l a t i v e [3] R e l a t i v e U s a g e P e r i o d
4 }
5
6 A b s o l u t e U s a g e P e r i o d : : = SEQUENCE {
7 n o t B e f o r e [0] G e n e r a l i z e d T i m e OPTIONAL ,
8 n o t A f t e r [1] G e n e r a l i z e d T i m e OPTIONAL
9 }

10
11 R e l a t i v e U s a g e P e r i o d : : = SEQUENCE {
12 n o t B e f o r e [0] INTEGER OPTIONAL ,
13 n o t A f t e r [1] INTEGER OPTIONAL
14 }

Listing 11: Definition of a timing trigger.

The ReplyCapability as shown in listing 12 allows a VortexNode to effectively limit
the memory usage.

1 R e p l y C a p a b i l i t y : : = SEQUENCE {
2 −− suppor ted c i p h e r s
3 c i p h e r SEQUENCE (SIZE (2 . . 2 5 6))
4 OF CipherSpec ,
5 −− suppor ted mac a l g o r i t h m s
6 mac SEQUENCE (SIZE (2 . . 2 5 6))
7 OF MacAlgorithm ,
8 −− suppor ted PRNGs
9 prng SEQUENCE (SIZE (2 . . 2 5 6))

10 OF PRNGType ,
11 −− maximum number o f b y t e s to be t r a n s f e r r e d
12 −− (outgo ing b y t e s i n v o r t e x message wi thout b l e n d i n g)
13 maxTransferQuota INTEGER (0 . . 4 2 9 4 9 6 7 2 9 5) ,
14 −− maximum number o f messages to p r o c e s s f o r t h i s i d e n t i t y
15 maxMessageQuota INTEGER (0 . . 4 2 9 4 9 6 7 2 9 5) ,
16 −− maximum s i m u l t a n e o u s l y t r a c k e d header s e r i a l s
17 m a x H e a d e r S e r i a l s INTEGER (0 . . 4 2 9 4 9 6 7 2 9 5) ,
18 −− maximum s i m u l t a n e o u s l y v a l i d b u i l d o p e r a t i o n s i n workspace
19 maxBuildOps INTEGER (0 . . 4 2 9 4 9 6 7 2 9 5) ,
20 −− maximum payload s i z e
21 maxPay loadSize INTEGER (0 . . 4 2 9 4 9 6 7 2 9 5) ,
22 −− maximum a c t i v e p ay l oa d s (wi thout i n t e r m e d i a t e p r o d u c t s)
23 maxAct i vePay loads INTEGER (0 . . 4 2 9 4 9 6 7 2 9 5) ,
24 −− maximum header l i f e s p a n i n seconds
25 maxHeaderLive INTEGER (0 . . 4 2 9 4 9 6 7 2 9 5) ,
26 −− maximum number o f r e p l a y s accepted ,
27 maxReplay INTEGER (0 . . maxNumberOfReplays) ,
28 −− Supported inbound b l e n d i n g
29 s u p p o r t e d B l e n d i n g I n SEQUENCE OF BlendingSpec ,
30 −− Supported outbound b l e n d i n g
31 suppor tedB lend ingOut SEQUENCE OF BlendingSpec ,

Listing 12: Definition of a capability reply block.

20.1.1 StorageManagement of Ephemeral Identities, Operations, and
Payload Blocks

The ephemeral identity (eID) is the overarching unit of user data. In a normal message server,
it may be comparable with the storage required for the queues. Unlike a message queue,
VortexMessages are not only kept until sent. VortexMessages have different properties as we
have a timed store-and-forward behavior. As a general rule, no data lives longer than its eID.

When an eID is requested an absolute UsagePeriod (a timezone bound time) is specifies
with an AbsoluteUsagePeriod is specified (see listing11). Unless used for reply blocks
(MURBs), eID have a very limited lifespan of a couple hours. This minimizes any storage
footprint associated with an eID.

119

1 HeaderBlock : : = SEQUENCE {
2 −− P u b l i c key o f the i d e n t i t y r e p r e s e n t i n g t h i s
3 −− t r a n s m i s s i o n
4 i d e n t i t y K e y AsymmetricKey ,
5 −− s e r i a l i d e n t i f y i n g t h i s b l o c k
6 s e r i a l INTEGER (0 . . m a x S e r i a l) ,
7 −− number o f t imes t h i s b l o c k may be r e p l a y e d
8 −− (Tup le i s i d e n t i t y K e y , s e r i a l w h i l e
9 −− UsagePer iod o f b l o c k)

10 maxReplays INTEGER (0 . . maxNumOfReplays) ,
11 −− subsequent B l o c k s a r e not p r o c e s s e d b e f o r e
12 −− v a l i d t ime .
13 −− Host may r e j e c t too long r e t e n t i o n .
14 −− Recomended v a l i d i t y s u p p o r t >=1Mt .
15 v a l i d UsagePer iod ,

16 −− c o n t a i n s the MAC−Algor i thm used f o r s i g n i n g
17 s i g n A l g o r i t h m MacAlgorithmSpec ,
18 −− c o n t a i n s a d m i n i s t r a t i v e r e q u e s t s such as
19 −− quota r e q u e s t s
20 r e q u e s t s SEQUENCE
21 (SIZE (0 . . maxNumOfRequests))
22 OF HeaderRequest ,
23 −− Reply Block f o r the r e q u e s t s
24 r e q u e s t R e p l y B l o c k RoutingCombo OPTIONAL ,
25 −− padding and i d e n t i t i f i e r r e q u i r e d to s o l v e
26 −− the c r y p t o p u z z l e
27 i d e n t i f i e r [1 2 2 0 1] P u z z l e I d e n t i f i e r OPTIONAL ,
28 −− T h i s i s f o r s o l v i n g c r y p t o p u z z l e s
29 proofOfWork [1 2 2 0 2] OCTET STRING OPTIONAL
30 }

Listing 13: Definition of a header block.

Every header block contains a relative and possibly an absolute UsagePeriod. A receiving
node calculates a headers’ lifespan by intersecting an absolute lifespan and a relative lifespan.
All elements of aVortexMessage inherit this lifespan. Therefore, payload blocks and operations,
as well as the routing blocks expire simultaneously within a workspace.

Furthermore, a node signals additional boundaries in the CapabilityReplyBlock (see listing 12).
With this block, a VortexNode may limit the storage required even further. By specifying
low boundaries for the maximum simultaneously usable payload blocks in a workspace
and their maximum size, we can effectively limit the size of the payload data of a single
workspace. The number of simultaneously active operations is similarly limited by specifying
maxBuildOps.

20.1.2 Life Cycle of Requests

Requests have a separate life cycle. As a request may exist prior to a corresponding workspace,
which is typically assigned to a proof of work, such requests may be subject to DoS attacks by
flooding the memory of a node. All requests immediately executed have no direct memory
requirements. However, requests containing a PoW cycle require to maintain the state.

While this is considered a minor issue as it is very likely that nodes will first collapse due to
their network load, we can still address this issue by using a secret generator instead of a list
as outlined in section 17.3.1. By using such a generator, we minimize the impact of a very
sudden increase in requests while keeping the local memory requirements to an absolute
minimum.

20.1.3 Minimizing the Memory Footprint of Message Processing

To limit the memory footprint of message processing, we reduced the information relevant
to be kept in memory by structuring the message accordingly. A node may first extract
the first header block, which is equivalent to the block size of the cipher used to encrypt
the header block. If the message is invalid due to a non-existent message, we may stop
there. We then start decoding the header prefix block, and if successful, the header, which
is typically less than 1KB in size unless it contains a routing block. Each routing block is
1 KB

hop in size (assuming a 2048 bit asymmetric key). Only the first couple of bytes have to
be read, and the vast majority may then be streamed as it is mainly a binary, encrypted
blob containing subsequent hops. All subsequent blocks (routing and payload blocks) are
not required to be kept in memory simultaneously. Instead, we may stream them into

120 CHAPTER 20. EFFICIENCY-RELATED IMPLEMENTATION DETAILS

a data structure on persistent storage. Operations on the payload block are suitable for
streaming processing either. For encryption and split/merge operations this is obvious. the
transformation and retransformation of the redundancy operations may be achieved with a
lookup table. However. it requires 256 KB on disk for a GF(216) transformation. The matrix
operations are comparably small again as they may be carried out on an element-per-element
basis with simple, calculable lookups.

We may therefore conclude that while a workspace may require considerable storage for
storing all payload and routing blocks, the processing of a message can be achieved in a very
memory-efficient manner if required. We may execute all calculations on payload blocks
in a streamed manner, and all blocks required for routing are either very small or may be
streamed again.

121

Message
arrives

Apply all advertized
blending schemes to

extract a
VortexMessage

VortexMessage
found?

Identity known?

Contains an identity
creation request?

Check for
message duplicate
and add message

serial to
workspace

Create new
temporary

ephemeral identity
(eID)

Create requirement
and add to
workspace

Message
dupli-
cated

Ephemeral identity
temporary set?

Contains valid
requirement?

Remove
temporary flag
from identity

Routing
block

matches for-
wardSecret?

More header
request or

requirements

VortexMessage
contains

payloads?

Message
quota

exceeded

(Delete message
in transport layer

storage)
End of processing

Create and/or
process

requirement and
add to workspace

Decrement
message quota

Add payload
to

workspace

U
na

ut
he

nt
ic

at
ed

m
es

sa
ge

A
ut

he
nt

ic
at

ed
m

es
sa

ge

No

Yes Yes

Yes

Yes

No

No

No

Yes

No

No

Yes

No

Yes

Yes

Yes

No

No

NoYes

Transport Blending Routing Accounting

Receiving a VortexMessage

Extract identity

Figure 17.1: Flow diagram showing processing of outgoing messages.

122 CHAPTER 20. EFFICIENCY-RELATED IMPLEMENTATION DETAILS

End of processing

Pr
oc

es
si

ng

Transport Blending Routing Accounting

Sending a VortexMessage

Time based trigger
of routing block

NoYes

Yes

No

Process all root
instructions of the
routing block and

the
dependendencies

Did build of any
segment succeed?

Calculate
message size and

verify quota

Is quota
exceeded?

Attach blending
instructions

Process
blending

Send message to
peer

Se
nd

in
g

Assemble
VortexMessage

Figure 17.2: Flow diagram showing processing of outgoing messages.

VIPa
rt

Operational concerns

Occurrences in this domain are
beyond the reach of exact prediction
because of the variety of factors in

operation, not because of any lack of
order in nature.
Albert Einstein

124 PART VI. OPERATIONAL CONCERNS

125

In this part we cover operational aspects of our system. Chapter 21 covers some general
operational concerns such as VortexNode types, or the handling of lifetimes. Chapter 22
covers routing concerns and introduces a simplified algorithm for building routing blocks.
Chapter 23 addresses the problem of obtaining keys of routing nodes and bootstrapping a
network. Finally, chapter 24 focuses on problems encountered when working with real-world
infrastructures.

21 General Operational Concerns

21.1 Hardware

We require no specialized hardware for running VortexNodes. Instead, we designed Mes-
sageVortex in such a way that ordinary mobile phones may act as VortexNodes. It is however
recommended to have a node always connected to the Internet. A mobile phone may discon-
nect from time to time based on the availability of the network. For our experiments, we
used a RaspberryPi Zero W. It is however recommended to use a faster, newer model due
to the proof-of-work algorithms’ memory requirements. The hardware currently requires a
network interface and a fully functional JSE VM to run the reference implementation.

21.2 Addressing VortexNodes

From the beginning, we were searching for an addressing scheme suitable for transparent
addressing.

A MessageVortex address is built as follows:
1 l o c a l P a r t = < l o c a l p a r t o f address >
2 domain = <domain p a r t o f address >
3 ema i l = l o c a l P a r t "@" domain
4 keySpec = <BASE64 encoded AsymmetricKey [DER encoded] >
5 s m t p A l t e r n a t e S p e c = l o c a l P a r t " . . " [keySpec] " . . " domain " @ l o c a l h o s t "
6 smtpUrl = " vo r t ex smtp : / / " s m t p A l t e r n a t e S p e c

To allow storage of MessageVortex addresses in standard messaging programs such as Outlook
or Thunderbird, we introduced smtpAlternateS pec.

The suffix “@localhost” ensures that any non-participating server does not route a VortexMes-
sage unintentionally. The doubly dotted notation is not RFC-compliant but was accepted
by all tested client address books. However, the address is not a valid SMTP address due to
its double-dotted notation. We selected this representation to differentiate MessageVortex
addresses from valid email addresses.

The main disadvantage of MessageVortex addresses is that they are no longer readable
by a human. The main reason for this is the required public key. We may abstract this
further by allowing cleartext requests on the primary email address for the public key. The
MessageVortex account must answer such requests with the valid MessageVortex address.

The smtpUrl represents the address in a standard way, which makes it suitable for QR codes
and intent filters on Android.

The public key of an address is encoded as follows:

1. The asymmetric key is encoded as specified in the AsymmetricKey in ASN.1

126 CHAPTER 21. GENERAL OPERATIONAL CONCERNS

2. The ASN.1 DER representation is then encoded with BASE64

ThekeySpecmay be omitted and inserted later from an address list. The quad-dotted result-
ing address is illegal in a standard mail system and offers a possibility for identification. Such
a keyless address may furthermore be used as a synonym for the receivers’ real address as
any potential receiver may send an unsolicited HeaderRequestReplaceIdentity.

21.3 Client

We did not create a MessageVortex client for sending messages. Instead, we used a standard
Thunderbird email client pointing to a local SMTP and IMAP server provided by a Mes-
sageVortex proxy. On the SMTP side, MessageVortex encapsulates where possible mails into a
VortexMessage and builds an automated route to the recipient. The SMTP part of VortexMes-
sage may be used to automatically encapsulate all messages with a known MessageVortex
identity into a VortexMessage. On the IMAP side, it merges a local VortexMessage store with
the standard email repository building a combined view.

Using MessageVortex this way offers us the advantages of a known client in addition to the
anonymity MessageVortex offers.

Using a proxy has certain disadvantages. At the moment, the MessageVortex client only
has a local store. Such a local store makes it impossible to handle multiple simultaneously
connected clients to use MessageVortex. However, this limitation is just a lack of the current
implementation and not of the protocol itself. We may safely use IMAP storage for centrally
storing VortexMessages. This statement is true as long as:

• The storage is not identifiable as such.
This requires:

– A non-identifiable folder/message structure

– A storage not identifiable by access patterns

– The stored messages have the same strength as the transmitted messages in terms
of detectability

• A secured key
Either the host key is secured sufficiently with a KDF and a passphrase (or similar), or
the host key remains off-storage.

21.3.1 MessageVortex Accounts

By definition, any transport layer address may represent a MessageVortex identity. This
fact may make people believe that their current email or Jabber address is suitable as a
MessageVortexaddress. This statement is technically perfectly true but it should not be done
for the following reasons:

• If an address is identified as a MessageVortex address, it may be blocked (directly or
indirectly) by an adversary. Such blocking would lead to the blocking of regular email
traffic as well.

127

• If a VortexNode is malfunctioning, non-VortexMessages should remain unaffected. Isola-
tion is far better if we keep non-VortexMessages in a separate account.

• If a user no longer wants to maintain his MessageVortex address, he may give up his
MessageVortextransport accounts. If he had been using his regular messaging account
for MessageVortex, he would receive mixed messages that are difficult to filter even with
a known host key.

21.3.2 VortexNode Types

Depending on the type of adversary within a jurisdiction, a VortexNode may require different
properties. In section 11.1, we defined observing and censoring adversaries. In environments
with an observing adversary, the presence of a VortexNode is not something that we have to
keep hidden. In jurisdictions with a censoring adversary, we have to hide our nodes from the
censor as their existence may be considered illegal.

21.3.2.1 Public VortexNode

Public nodes are nodes, which advertise themselves as standard mixes. Just like all nodes,
they may be an endpoint or a mix. Typically, they accept all requests precisely as outlined in
table 18.1. As an immediate result of the publicly available information about such a node,
the owner may be the target of our censoring adversary. An adversary may oppose pressure
to close down such a node. However, since we do not need a specific account, we may safely
close down one transport account and open up a different one. Such account reopenings are
even possible on the same infrastructure. We are even able to notify other users of the move
and remain reachable, as a user may send a HeaderRequestIdentity request using
the old identity.

21.3.2.2 Stealth VortexNode

This node does not answer any cleartext requests. As an immediate result, the node is only
usable by other nodes knowing the node’s public key. The node is therefore only reachable
on a known secrets’ basis. A sender may use this node type in environments with a censoring
adversary. People may form closed routing groups that route and anonymize themselves.
We have to state that putting trust into the routing nodes violates the zero trust principle. It
is however currently the only way to outcurve a censoring adversary. Means such as using
distribution lists as endpoints seemed to be of some value at first but turned out to shift the
problem of detection from the routing to the less secure transport layer.

21.3.2.3 Hidden VortexNode

A hidden node is a special form of a stealth node. It has a predefined set of identities. Only
these already known identities are processed. This behavior has certain drawbacks. A sender
may not change an existing identity, and he may not create new, unlinked eIDs. As an
immediate result, traffic may become pseudonymity. To counter this effect at least partially,
we may use the same local identity for multiple senders. To remove clashes in the workspace,
we may use preassigned IDs in the workspace. The sender is only one of all senders with

128 CHAPTER 22. ROUTING

knowledge of the private key of an identity. The advantage of such a node is that identities
have unlimited quotas on such nodes, no longer bothering about accounting and refreshing
identities. /Such behavior seems to be a valuable option when using bulletproof providers.

22 Routing
Routing (as described in section 13.2.4.2) contributes heavily to the security of
MessageVortex. In our system, we typically have one node identity (node key).
While this identity is relatively constant (but may be exchanged and notified by a
HeaderRequestReplaceIdentity request), the involved transport nodes may be
more mobile. In general, an incoming transport address changes relatively infrequently (un-
less advertised to friends with the header request mentioned above). The sending endpoint
is irrelevant in the routing, and any routing node may, apart from the protocol type, freely
choose this endpoint.

While having routing capabilities is mandatory, as every repeated pattern in routing leads
to the possibility of identifying a node of an anonymity system, it adds significantly to the
systems’ complexity.

The following sections emphasize the operational aspects of the routing. We introduce a
detailed pseudo-code for creating a routing block and elaborate on this implementation’s
pros and cons regarding complexity and anonymity.

22.1 Strategies for Composing Routing Blocks

We have to follow certain rules when building routing blocks. The rules are:

• Valid chain of operations
Assuming an adversary has partial or full insight into a routing graph (except for the
sender and the final recipient), all operations must be valid. This means that no operation
may be applied and an inverse operation with different parameters (i.e., DKb

(︁
EKa (X)

)︁
).

• No pattern is repeated within the protocol. This constraint applies to:

– Timing patterns in messages.
Assuming we define fixed patterns of how a message has to be delivered (e.g., a
message has to be delivered within a certain time or a payload block expires in a
workspace within a certain amount of time) and publish these as general rules, in
that case, we allow an attacker to identify such timing patterns of the net and draw
precise lines which observed transport messages might be involved in a message
transfer. By omitting such definitions and allowing each RBB to define these values
to themselves without communicating them, we make it more difficult to analyze
the system by timing patterns.

– Operation patterns.
By defining operations used in a fixed pattern (e.g., first, distribute a message over
five independent message paths sized n), we would provide an adversary with
clues to where in this pattern he is located and how close he is in regards to the
beginning or end. A difference in the patterns for message traffic and decoy traffic
may result in the identification of decoy traffic.

129

– Message patterns.
Always communicating in the same pattern of messages (regardless of the timing).
For example, always creating a full communication mesh with all parties of the
anonymity set is an identifiable property that an adversary may use to identify
involved VortexNodes from the outside.

– Patterns in size or content of the payloads.
Always sending similar patterns in size or content allows an inside observer to
match similar sized payloads suspecting that they might have a connection and
thus breaking the anonymity generated by an intermediate, honest node. Having
the same pattern in the content on two different nodes (even as an “intermediate
result”) breaks all anonymization steps taken between the two workspaces as two
collaborating nodes may identify this content as the same and thus conclude with
certainty that they belong to the same message.

– Applies the same patterns on decoy routes as on message routes.
When applying different patterns on message and decoy routes, an adversary
might notice such different behavior and thus exclude all in decoy traffic involved
nodes from the anonymity set.

• Sufficient anonymity set
We assumed not to trust others’ traffic. This means that an RBB has to pick a sufficiently
large set for its anonymity needs by itself. Overlapping traffic will add to the anonymity,
but an RBB should not rely on that assumption.

We may use several strategies depending on our anonymity needs.

Strategies may include:

• Focusing on the redundancy of paths.
In this scenario, we build routing graphs that have a minimum sized set of u independent
paths expressed by the involved nodes. Such a routing graph can guarantee that a
message will arrive when fewer than u nodes fail.

• Focusing on involved jurisdictions.
By focusing on the jurisdiction, an RBB may decrease the likeliness of analysis. As with
each jurisdiction involved in the routing of a VortexMessage, the likeliness increases that
a non-collaborating jurisdiction is involved. By making educated guesses (e.g., that two
opposing countries or organizations are unlikely to collaborate), the risk that a path
may be thoroughly analyzed from the sending node to the receiving node is less likely.

• Focusing on the speed of delivery.
The smaller we define the time windows for routing a message from the sender to the
final recipient, the simpler the analysis for an adversary as there are fewer messages
involved in a possible routing (assuming that an adversary has the means to magically
identify all VortexMessages). Inversely, if the speed of a message may be generally slow,
an adversary has to take far more messages into account.

• Focusing on the size of the anonymity set.
The more involved the nodes and transport protocols in a routing block are, the more
complex observation of the protocol is. By increasing the anonymity set, the likelihood
of overlapping routing graphs increases significantly. Furthermore, the regular message
traffic of the transport protocol may further increase the complexity for an outside
observer.

130 CHAPTER 22. ROUTING

• Focusing on anonymity of the eIDs.
By using only short-term eIDs whereever possible, we increase the complexity for an
adversary as we reduce the number of overlapping routing points for the same identity.
While the original sending identity may remain the same, the changing eIDs make it
impossible to identify anonymity groups over time.

• Focusing on the distribution of the message parts.
A sender applying an addRedundancy(m, n) operation to a message before sending is safe,
unless n − m nodes in independent message paths collaborate and have full knowledge
of all keys and operations (including the ones applied on the senders’ node) as the
resulting equation system would have any possible solution (in length and appearance)
up to the size of all n − m blocks.

• Focusing on diagnosability.
By deploying diagnosis payload blocks on subsequent nodes instead of just leaving them
in the workspace of a node, the possibility of falsifying the result of a diagnosis based
on the assumption that the first delivered block belongs to a message and diagnosis is
made retrospectively when detecting a problem is eradicated.

The algorithm itself does not really matter as long as it guarantees the properties at the
beginning of this section.

22.2 Strategies for Minimizing Impact and Maximizing
Effect when Routing Foreign Messages

Keeping a single node alive can be crucial. If we assume that the a message is received and
sent through the same transport account, it is relatively easy for an adversary to observe this.
By sending it to a recipient transport address, he learns that a VortexNode is connected to that
address. Conversely, any mail coming from such an address is potentially a VortexMessage.

Any node may reduce the traceability by following a couple of additional rules. First of all,
transport addresses for sending should be kept separate from receiving transport addresses.
This way, an adversary needs to carry out man-in-the-middle (MitM) attacks in the respective
access protocols or gain direct access to the transport infrastructure to learn what transport
addresses are used by the VortexNode. If NAT is involved in the client access, as it is the
normal case when using the targeted infrastructure for a VortexNode, it just adds to the
complexity an adversary has to solve. While this is no true gain in anonymity, it contributes
heavily to the complexity an adversary has to handle. In a more advanced scenario, we
would use an anonymization technology such as ToR to further hide the accessing source
(VortexNode) from the transport infrastructure. However, the use of such technology will
make access suspicious and possibly lead to the identification of the transport account.

A supposedly compromised transport layer recipient endpoint address may be migrated using
a HeaderRequestReplaceIdentity request as outlined in section 17.3.2. Such a
request leaves no trace to the transport endpoint owner but allows any subset of known
VortexNode to advertise the migration in a cryptographically secured way. Additionally, this
request allows by omitting the new address to bind an ephemeral identity to a true transport
address identifying the sender of a message. Such an ephemeral identity may be assigned
with an infinite quota by the owner to spare the costs of recreating and re-authenticating
the sender. If such binding of identity is carried out, it is vital that this identity is not used

131

for routing but only as an endpoint. Otherwise, a malicious “friend” could draw conclusions
on routing anonymity set and frequency out of such an identity.

22.2.1 Operational Aspects of MURBs

As we have interactions of any possible node with an unknown sender of a request (e.g.,
in the case of a new identity request), reply blocks are a necessity for the MessageVortex
protocol.

Originally, we included the possibility of replaying replayable blocks (MURBs) for sending
error messages. Soon we found out that such messages imply privacy issues. While the error
messages were discarded in favor of an RBB-based diagnosability, we kept the possibility of
MURBs to enable users to have sender/recipient anonymity.

Our MURBs are routing blocks that an owner of the block may use for a limited amount of
time. Such sending may be carried out without any knowledge about the recipient’s identity,
location, or infrastructure. A MURB is equivalent to a normal routing block except for the
following properties:

• The sender is unknown but the receiver of the message is.

• It has a replay value of 1 or higher.

• Due to transport layer size restrictions and ephemeral quotas, the total size of the
transported messages is limited.

A MURB in our term is an entirely prepared routing instruction built by the recipient of a
message. The sender has only the routing blocks and the instructions to assemble the initial
message. He does not know the message path except for the first message hop.

As a MURB is a routing block, it generates the same pattern on the network each time a
sender uses it. To avoid statistical visibility, we need to limit the number of uses per MURB.
The protocol is limited to a maximum of 127 usages. This number should be sufficiently sized
for automated messages. A minute pattern would disappear after 2 hours at the latest and
an hourly pattern after five days.

For a MURB to work, the RBB has to ensure that all quotas required to the route are
sufficiently sized. Such sizing is difficult to foresee in some cases. An RBB may query these
identities from time to time to ensure that they do not deplete. Wherever possible, MURBs
should be dropped in favor of multiple SURBs to avoid the dangers of MURBs.

22.3 Routing Algorithms Suitable for Achieving Anon-
ymity

In section 22.1, we elaborate on the properties of a routing block required to build an
anonymizing message path.

In short, every foreseeable or logically invalid pattern may be used to identify VortexMessages
or in transport involved nodes. This is why we cannot use a fixed pattern in routing. Instead,
we use randomized routing patterns. Ordinary fixed pattern protocols, such as broadcast or

132 CHAPTER 22. ROUTING

DC-net-based protocols, are identifiable as their communication pattern is stable (fixed set
of messages between involved nodes and foreseeable message size). Whereas the message
size might be varied in such systems by adding decoy content or stuffing, such behavior
depends on the secrecy of the nodes executing such operations.

22.3.1 The Routing Block

In general, an RBB builds a routing block in three stages:

1. Create a random but “valid” directed multigraph (routing graph) where the nodes
represent VortexNodes, and the edges represent actual messages sent between the
VortexNodes and are assigned a label depicting the sequence in time. The graph may
contain loops. We may visualize such a routing graph traditionally. Alternatively, we
found that displaying the graph as a sequence of messages (see fig. 22.1) offers a better
overview over the inner workings of a routing graph. For a graph to be valid there must
be at least one valid path from node 0 to any other node, including node 1 which is our
main target. Furthermore, outgoing edges may only arise after a an incoming edge is
present.

2. We then rewrite that graph and order it while assigning timing information to each edge,
leaving sufficient time in between to process the incoming message on the transport
layer.

3. As the next step, we assign operations to all involved workspaces.

Based on such a routing graph, we refer to a path between the two nodes i and j as an
ordered set of edges, where an edge always starts where the previously edge ended, the first
edge starts at node i, and the last edge ends at node j. A path may contain the same node
multiple times, and a routing graph may contain multiple paths between two given nodes.
Figure 22.2 shows all paths between nodes 0 and 1 of the graph outlined in fig. 22.1. All these
paths may be used to transport a message from node 0 to 1. Depending on the strategy,
multiple paths may be used to transport a part of a message or used to transport redundant
message parts.

A possible routing mechanism creating such a graph and applying routing information is
described in detail in section 22.3.2.

22.3.2 A Simple Routing Strategy

In this section, we show a simple algorithm for creating a routing graph in a non-censored
environment or in an isolated node-set in a censored environment. While the algorithm is
complete, we had to shorten it for this work in order to remain readable. The algorithm is
not perfect as it leaks certain properties, such as the maximum possible message size.

To create a routing block, we need some basic objects as defined in algorithm 1.

Algorithm 1 Objects for building a routing block.
1: ▷ A routing graph
2: object RoutingGraph

133

0 start node

1 end node

n routing node

routing operations

end operations

0

1
2

3

4

5
6

1

2

3

4

5

6

7

8

9

10

11

12
13 14

15

16

17

0 1 2 3 4 5 6
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

ti
m

e
(e

po
ch

)

redraw and

order

0 1 2 3 4 5 6
1: 00:10

2: 00:23-00:36
3: 00:41-00:44
4: 00:58-01:10
5: 01:25-01:28
6: 02:09-02:21
7: 02:45-02:48
8: 02:59-03:20
9: 03:34-03:36

10: 03:40-04:01
11: 04:21-04:22
12: 04:42-04:56
13: 05:10-05:19
14: 05:26-05:27
15: 05:36-05:56
16: 06:20-07:15
17: 08:11-08:12

as
si

gn

ti
m

e
sl

ot
s

0 1 2 3 4 5 6
1: 00:10

2: 00:23-00:36
3: 00:41-00:44
4: 00:58-01:10
5: 01:25-01:28
6: 02:09-02:21
7: 02:45-02:48
8: 02:59-03:20
9: 03:34-03:36

10: 03:40-04:01
11: 04:21-04:22
12: 04:42-04:56
13: 05:10-05:19
14: 05:26-05:27
15: 05:36-05:56
16: 06:20-07:15
17: 08:11-08:12

assign

operations

Figure 22.1: Transformation of a graph into a sequence of messages.

3: ▷ Contains the routing VortexNodes (node[0]→sender; node[1]⇒receiver)
4: nodes : Sequence<Node>
5: ▷ Contains messages between the nodes
6: edges : Sequence<Message>
7: end object

8: object Message
9: sourceNode : Node

10: sourceId : int
11: earliestTime : datetime
12: latestTime : datetime
13: targetNode : Node
14: targetId
15: operations : List<Operations>

16: procedure setTiming(min,max)
17: earliestTime← min
18: latestTime← max
19: end procedure
20: end object

21: ▷ The projected workspace of any eID under our control
22: objectWorkSpace
23: payloads : Map<Id,Payload>
24: routingBlocks : List<RoutingBlock>
25: operations : List<Operation>

26: ▷ Returns an unused id with at least <numberOfSubsequentIds> unused IDs following
27: abstract function getUnusedId(numberOfSubsequentIds) {. . . };
28: ▷ Returns a random output id of an operation unused so far and marks it as used
29: abstract function getRandomPayloadId() {. . . };
30: end object

31: ▷ An object reflecting our knowledge about MessageVortex
32: object Universe
33: knownNodes : Map<Node,WorkSpace>
34: keysize : Integer ← 256

35: ▷ Returns all the nodes of knownNodes
36: abstract function getAllNodes() {. . . };
37: ▷ Returns a random node of list
38: abstract function getRandomNode(list) {. . . };
39: ▷ Returns the representation of the workspace of the named node
40: abstract function getWorkspace(node) {. . . };
41: ▷ Adds a message to a workspace with all its content (payloads, operations)
42: abstract function addMessageToWorkspaces(message) {. . . };
43: ▷ returns an integer r within 0<=r<maxValue

134 CHAPTER 22. ROUTING

0 1 2 3 4 5 6

tim
e

0 1 2 3 4 5 6

tim
e

0 1 2 3 4 5 6

tim
e

0 1 2 3 4 5 6

tim
e

0 1 2 3 4 5 6

tim
e

0 1 2 3 4 5 6

tim
e

0 1 2 3 4 5 6

tim
e

path
1

path
2

path 3

path 4
pa

th
5

pa
th

6

Figure 22.2: A graph containing six paths between node 0 and node 1.

44: abstract function nextRandomInt(maxValue) {. . . };
45: ▷ returns an double r within 0<=r<1
46: abstract function nextRandomDouble() {. . . };
47: ▷ returns an double r with a Gaussian distribution
48: abstract function nextRandomGaussian() {. . . };
49: end object

To create a routing block, we first need a graph representing the message flow. Algorithm 2
shows a pseudo-code to create such a valid graph. After creating a graph, we need to
assign timing and routing information. Algorithm 3 shows a possible algorithm for assigning
this timing information, whereas algorithm 4 shows a simple generator for the routing
operation. The algorithm omits IDs for simplicity allocation of the workspace as this is a
“bookkeeping”-only problem.

To create a graph, we use the function getRoutingGraph on line 1 as shown in algorithm 2.
It creates an ordered set of nodes (nodes), whereas the first node in the set is the sender
and the second node of the set is the final recipient. It then adds randomly known nodes
until the anonymity set is as large as requested. Next, we assign the edges by calling

135

function getEdges (Line 25). The function loops until the requested minimum number of
edges are reached, and all nodes of the graph receive at least one message. On each loop, an
edge is added to the graph, that points from any already reached node to a random, different
node.

Algorithm 2 Simple Graph for Routing Block.
1: function getRoutingGraph(startNode,endNode, numNodes, minEdges, universe)
2: ▷ The maximum number of seconds until the message needs to be delivered
3: maxTime← 3000
4: ▷ The minimum number of seconds a message has time to be on one routing node
5: minHopTime← 10
6: ▷ The minimum number of seconds a message has time to be on one routing node
7: redundantRoutes← 3

8: ret← new RoutingGraph()
9: ret.nodes← getNodes(startNode, endNode, numNodes, universe)

10: ret.edges← getEdges(minEdges, ret.nodes, universe)
11: ret.edges← assignTiming(ret.edges, maxTime, minHopTime, universe)
12: ret.edges← assignRouting(ret.edges, redundantRoutes, 0, universe)
13: return ret
14: end function

15: function getNodes(startNode, endNode, numberOfNodes, universe)
16: nodeList← [startNode, endNode]
17: while len(nodeList) < numberOfNodes do
18: randomNode← universe.getRandomNode()()
19: if ¬nodeList.contains(randomNode) then
20: nodeList.append(randomNode)
21: end if
22: end while
23: return nodeList
24: end function

25: function getEdges(minEdges, nodes, universe)
26: edgeList← []
27: listOfReachedNodes← getReachedNodes(edgeList, nodes[0])
28: while len(edgeList)<minEdges or

len(listOfReachedNodes) < len(nodes) do
29: startNode← universe.getRandomNode(listO f ReachedNodes)
30: endNode← universe.getRandomNode(nodes − [startNode])
31: edgeList.append(new Message(startNode, endNode))
32: listOfReachedNodes← getReachedNodes(edgeList)
33: end while
34: return edgeList
35: end function

36: function getReachedNodes(edgeList,startNode)
37: reachedNodeList← [startNode]
38: for all e ∈ edgeList do
39: if ¬reachedNodeList.contains(e.targetNode) then
40: reachedNodeList.append(e.targetNode)
41: end if
42: end for
43: return reachedNodeList
44: end function

Function assignTiming is specified in algorithm 3 on line 1. In this function, we assign the
timing information to the graph.

We use a custom random distribution called getRandomTime(line 21). This distribution is a
derived form of a Gaussian distribution and has its minimum value, maximum value, and
peak value at desired spots. The squishing of the function violates some properties of the
Gaussian bell curve. Due to the squishing, the left and right sides of the bell no longer have
the same area. The timing information distributes in a serialized way along the timeline.
Figure 22.3 shows the distribution of the implementation.

We assign the timing information by looping through our ordered set of edges. First, we
calculate the earliest (earliestTime) and the maximum available time starting then (maxShare)

136 CHAPTER 22. ROUTING

70 90 120 200

0

max

·106

Figure 22.3: Distribution of getRandomTime(90, 120, 200) in algorithm 3.

until the message has to be sent. We calculate when the message has to be sent in relation
to earliestTime (share). Finally, we generate a time when an edge may be executed earliest
(minTime; line 12) and latest (maxTime; line 13).

Algorithm 3 Assign Timing Information to a Graph.
1: function assignTiming(edges, maxTime,minHopTime, universe)
2: if len(edges) × (minHopTime - 1) > maxTime then
3: throw "maxTime too small for constraints"
4: end if
5: earliestTime← 0
6: maxRemainingTime← maxTime − earliestTime
7: remainingHops← len(edges) − 1
8: times← []
9: for all e ∈ edges do

10: maxShare← remainingTime − remainingHops ×minHopTime
11: share← maxS hare

remainingHops
12: minTime← getRandomTime(earliestT ime, earliestT ime + share, earliestT ime + maxS hare)
13: maxTime← getRandomTime(minTime, minTime + share, earliestT ime + maxS hare, universe)
14: earliestTime← maxTime +minHopTime
15: remainingHops← remainingHops − 1
16: maxRemainingTime← maxTime − earliestTime
17: e.setTiming(minTime, maxTime)
18: end for
19: return textedges
20: end function

21: function getRandomTime(min, peak, max, universe)
22: value← min − 1
23: while value < min or value > max do
24: value← universe.nextRandomGaussian()
25: d← universe.nextRandomDouble()
26: if d < (peak − min)/(max − min) then
27: value← peak − abs(value)×(peak−min)

5
28: else
29: value← peak + abs(value)×(max−peak)

5
30: end if
31: end while
32: return value
33: end function

Key to the graph itself is neither the edges or nodes nor the timing, but the operations
applied to the graph. This part is covered by function assignRouting in algorithm 4. We
assign the operations in three steps. We first assign to redundantRoutes a valid message
path (lines 5-15). Then we identify “unused (sub-)routes” and assign the same operations to
these routes (lines 17-19).

137

Operations are assigned in a recursive manner. First, we identify the routes we want to
assign operations. This recursive part is achieved by the assignSingleRoute(line 23-32). We
first identify a payload to be transported and the chain of nodes. We call assignSingleRoute,
which will then apply a random operation on the first node and transport the relevant
payload block to the second node in the chain, mapping it there to an unused ID within the
workspace. We then take the remaining path with the newly created ID in the remaining
path and repeat the step, thus looping recursively through the path until we have covered
the whole path.

Operations are chosen in two ways: either we create an addRedundancy operation of type
n − 1 of n, or we use a simple encryption step. In each case, we apply an operation on the
current node a, and on the final node we apply the reverse operation, thus rebuilding the
message on the last node simultaneously.

Algorithm 4 Assign Routing Information to a Graph.
1: function assignRouting(edges, redundantRoutes, messageId, universe)
2: if redundantRoutes < 1 then
3: throw "At least one route is required"
4: end if
5: routes← getRoutes(edges)
6: if len(routes) < redundantRoutes then
7: throw "Graph has not enough redundant routes"
8: end if
9: ▷ Add operations to true routes

10: numRoute← 0
11: while redundantRoutes > numRoute do
12: currentRoute← routes[numRoute]
13: assignRoute(currentRoute, payloadId, currentRoute[LAST], 0)
14: numRoute← numRoute + 1
15: end while
16: ▷ Add sensible operations to decoy routes
17: for all r ∈ getUnusedRoutes(edges) do
18: assignRoute(r, r.getRandopOperation().getUnusedIds(1), NULL, 32769)
19: end for
20: addMessageMapping(edges)
21: return edges
22: end function

23: function assignSingleRoute(route, payloadIds, lastNode, targetIds)
24: source← route.getS ourceNode()
25: if payloadIds.isEmpty() then
26: PayloadIds← source.getRandopOperation().getUnusedIds(1)
27: payloadSet← assignRoute(route[2-], targetIds.forward(), lastNode, targetIds.reverse())
28: else
29: targetIds← assignOperation(route.getSourceNode(), payloadIds, lastNode, targetIds, universe)
30: payloadSet← assignRoute(route[2-], targetIds.forward(), lastNode, targetIds.reverse())
31: end if
32: end function

33: function assignOperation(node, transportIds, reverseNode, targetIds, universe)
34: out← node.outEdges()
35: in← node.inEdges()
36: if out > 1 or extRandomInt(3) = 1 then
37: ▷ assign addRedundancy
38: numBlocks← max(out+1, universe.nextRandomInt(out+4))
39: seed← universe.nextRandomInt(2256)
40: op← node.addRedundancy(transportIds, numBlocks - 1, numBlocks, seed)
41: if reverseNode! = NULL then
42: reverseOp← reverseNode.removeRedundancy(targetIds, op)
43: newId← op.getUnusedIds(1)
44: newId.addReverseIds(reverseOp)
45: end if
46: else
47: ▷ assign encrypt
48: keySize← (universe.nextRandomInt(3) + 2) * 64
49: key← universe.nextRandomInt(2keySize)
50: op← node.encrypt(transportIds, "AES", keySize, key)
51: if reverseNode! = NULL then
52: reverseOp← reverseNode.decrypt(targetIds, op)
53: newId← op.getUnusedIds(1)

138 CHAPTER 22. ROUTING

54: newId.addReverseIds(reverseOp)
55: end if
56: end if
57: return newIds
58: end function

The algorithm outlined in this section has several of disadvantages due to its brevity. As
it proves difficult to split routes in such a compact recursive manner, it was omitted. For
the same reason, we always used addRedundancy operations, which rebuild the message
out of a single block. These simplifications have some drawbacks. This algorithm never
loses size (it may gain size due to padding and stuffing). Therefore, we may match similarly
sized payload blocks as potentially belonging to the same message. Apart from that, the
algorithm fulfills all criteria mentioned above. We apply the same operations on the decoy
and true message traffic, and we have no timing, operations, or message patterns. As soon
as this algorithm uses traffic splitting with either the split or addRedundancy operation, this
weakness disappears.

22.4 Routing Diagnosis and Reputation Building

When all nodes are working as expected, no diagnostic is required. As we rely on always-
connected devices such as mobile phones as routers, it is likely that not all nodes are available
within the required time frames. As a result, we need at least the possibility to identify
malfunctioning nodes and exclude them from routing. Furthermore, active adversaries may
intentionally induce bad packets to destroy message content.

MessageVortex allows a diagnosis to identify such malicious nodes. We differentiate between
implicit and explicit diagnosis. When making an implicit diagnosis, we analyze packets
that are routed from the start node over one or more other nodes back to the start nodes
again. As a routing block builder is aware of the message content and all involved routing
operations, it may calculate the payload spaces at all points throughout the message transfer
and therefore predict the content and size of the payload blocks received. This is possible
due to the fact that we defined all operations byte-precise and left no room for interpretation.
This applies to all parts of the operation, including padding and stuffing. If the received
payload blocks differ from the expectation, at least one of the nodes involved in the transfer
of the payload malfunctioned. Reputation-buiding over time can be achieved by assigning to
all nodes additively a small reputation value if involved in a working route and subtract a
value when participating in a loop that malfunctioned. As malfunctioning nodes will always
be in a malfunctioning loop, their reputation value will drop while working nodes will build
up a score each time when participating with other working nodes.

We describe the reputation of a node a as Ra. Node a takes part in a set closed loops I with
elements Ii. The weighting wi of a loop Ii is 1 for a successful loop and −1 for an unsuccessful
loop. We then may calculate the reputation Ra as described in section 22.4.

Ra =
∑︁

i

wi

len (Ii)
(22.1)

We can make an explicit diagnosis in the case where the payload received does not match its
expected value or is completely missing. We may achieve this by creating additional routing
blocks picking up packets of the previous message in the workspaces of the suspected mal-
functioning nodes. Explicit diagnosis yields a big danger. An adversary expecting diagnosis,

139

because he knows that he cheated, may fall back to an irregular behavior where the first
operations are falsified, and if a second routing block arrives, the expected answers are given.
This would falsify the reputation score in favor of an adversary and lower the reputation
score of any subsequent nodes. This is why we recommend not using explicit diagnosis
to identify active adversaries or calculate a reputation but only to identify nodes that are
offline.

22.5 Redundancy and Distribution Strategy

The capability to distribute data and redundancy information over several nodes is one of
the key features of the protocol. The addRedundancy operation serves two purposes. First, it
allows a splitting operation where the content is not only split but distributed over all parts.
While a normal splitPayload operation leaves the message itself intact but splits it into
two parts, which each may contain meaningful, readable parts of the underlying message,
addRedundancy distributes the message over the output blocks. The difference is not as big
as it seems, as the input is (with a possible exception to the sending node) not applied to the
original message but to an encrypted part of the message.

Assuming that an attacker does not control the whole network of relevant messages but is
in possession of the whole routing block and possesses all operations and keys to recover
the original message, it is safe to say that distributing the message over multiple redundant
paths improves security. Both operations allow such behavior, but in a very different way.
The operations splitPayload and mergePayload allow creating payload blocks with any size.
However, when transmitting both sizes of a split, they add up to a full block size of the
previously completed encryption operation. Thus, if we control both receiving nodes of the
parts of the splitPayload operation, we may conclude that the two eIDs belong to the same
real identity. This is why we always used a subsequent encryption operation after applying
a splitPayload. This rounds both chunks again to block sizes of the encryption operation.

23 Protocol Bootstrapping
Protocol bootstrapping is especially difficult in an environment with a censoring adversary.
While in an environment of an observing adversary, the nodes may be public and thus
queried. In an environment of a censoring adversary any directory or possibility to query
nodes inevitably leads to a possibility of harvesting VortexNodes.

We consider the bootstrapping problem as one of the major, unsolved problems of Mes-
sageVortex.

23.1 Key Distribution for Endpoints

For endpoints, we may have at least a partial solution. Sending a VortexMessage as an
unencrypted message to the users’ true email, containing a request capability block and
a HeaderRequestReplaceIdentity without a new NodeS pec may be used to
initiate a handshake between two nodes. While such behavior is cryptographically secured,
the observing adversary gains as additional information that the receiving party of the
message is using MessageVortex and learns the full address, including its key from the

140 CHAPTER 24. REAL-WORLD PROBLEMS WHEN USING MESSAGEVORTEX

sending party. None of this information is confidential in an environment with an observing
adversary but shows the weakness of bootstrapping the system.

23.2 Key Acquisition for Routing Nodes

An adversary may make key acquisitions of routing nodes in an observing adversary en-
vironment through the HeaderRequestNodes request. All these nodes distributed by such
mechanisms are so-called public nodes and must be considered as untrustworthy nodes at
any time.

It is interesting to have an inbound address listed as a public node due to their traffic and
the observable endpoints. Simultaneously, they are not suitable as nodes for communicating
with environments connected to a censoring adversary. Therefore, such nodes are typically
not considered to increase the anonymity set. This is because such an adversary would most
likely try to harvest all public nodes and blacklist them to block cross border traffic and
possibly gain clues on the identity of transport endpoints of VortexNodes within his reach.

Tus, while a node in an environment with an observing adversary may use such public nodes,
a VortexNode within reach of a censoring adversary has two choices:

• Build a trusted “own” network of trustworthy partners and exchanging keys initially by
hand.

• Exit the jurisdiction on the first hop or even by using a transport layer account supposedly
outside the reach of the own censoring adversary

Both options are equally bad, but the second option is easier to fulfill as currently alliances in
terms of cooperations seem to be relatively stable, and only a limited amount of adversaries
(e.g., “Five Eyes” or China) have the resources to record encrypted traffic for later decryption.

24 Real-World Problems when UsingMessageVortex
Some problems are not directly related to the MessageVortex protocol but must still be
considered when implementing or using MessageVortex. The problems discovered during our
experiments and possible solutions are listed in the following sections.

24.1 Size Restrictions of the Transport Layer

A transport layer may limit the size of messages transferred. We managed to create Vor-
texMessages as small as 2KB in size. Considering the blending overhead of F5, our message
is sized at least 16KB, which is not a problem for any selected transport protocol. While a
VortexMessage may be small, an size limit is possibly imposed by the transport layer. Most
SMTP providers define a limit of 10 MB

message . Considering that we use a binary transfer, which
is typically BASE64-encoded, the usable transfer size is roughly 7.5MB, as BASE64 adds
roughly 25% overhead. Considering that we should not use any content larger than 12%
of the carrier message, the true transport capability of a 10MB message drops to ≈ 900KB,
which is disastrously small. While a single VortexMessage may not be larger than the 900KB

141

limit on SMTP due to this limitation, the assembly in a workspace allows transporting larger
messages than the limit on the transport layer.

The size of this calculation shows the waste of the transport capacity of our system in a
drastic way. Assuming that we use a high anonymity set of k = 30nodes and assuming that
on average, each message contains half of the original message and we are exchanging 60
messages within the anonymity set, a 900KB message would result in 60 × 5MB = 300MB
cumulated transfer volume between all nodes which results in a total transfer efficiency of
≈ 0.3%. While such waste is not uncommon within anonymity systems (unless tuned for
efficiency), the level of waste is dramatic.

24.2 Redundancy of the VortexNode

At the beginning of our work, we attempted to make VortexNodes redundant by sharing
configuration and state data over the transport media. While the idea was tempting, we
discovered that any kind of such usage leads to an uncommon usage pattern of the transport
account. This uncommon usage pattern allows an adversary to identify transport accounts
of VortexNodes.Thus, we dropped this idea.

142 CHAPTER 24. REAL-WORLD PROBLEMS WHEN USING MESSAGEVORTEX

VIIPa
rt

Analysis of MessageVortex

Atoms are very special: they like
certain particular partners, certain

particular directions, and so on. It is
the job of physics to analyze why

each one wants what it wants.
Richard P. Feynman

144 PART VII. ANALYSIS OF MESSAGEVORTEX

145

In section 11.1, we described two different kinds of adversaries. These adversaries require
different properties to be fulfilled.

An observing adversary is the less restricting one. While this adversary observes all traffic,
he does not disrupt communication. Instead, he uses all available information to collect data
about all items of interest (IoI). He may do this, for example, by collecting inside or outside
information about all message flows he may encounter. He may use this information and
assign it to specific individuals or groups of individuals.

A censoring attacker is far more dangerous to our system as he does not only observe the
system, but he may systematically suppress freedom of speech and all related technology.
As he has the means and the technical know-how, he may try apart from observing, to
discover systems communicating illegally either by observation or by infiltration. He may
furthermore track down individuals within reach and prosecute them. All other illegal system
participants may be either identified and blacklisted or even attacked either by infiltrating
their systems or by effectively launching DoS attacks against those systems.

In the following sections we will analyze aspects of confidentiality, integrity, and availability
for our system and highlight differences in terms of the different adversaries.

25 Identification of Possible Attack Schemes and
Mitigation

In this chapter, we take the attacks identified in section 27.1 and analyze our protocol on
whether it is susceptible to such attacks or not.

25.1 Static Attacks

Static attacks typically address weaknesses within a protocol design. The following attacks
are typically used to attack protocols similar to our proposal.

A VortexMessage itself is crafted in such a way that for a routing node, only minimal effort is
sufficient to obtain a short-lived pseudonym (eID) of the sending party of a transmission. The
operations KmsgN = DK1

host (P) and HEADER = DKmsgN (H) are sufficient to identify message
senders. Unknown senders may be discarded without further processing. Known senders may
be identified as legitimate and processed further. Known misbehaving identities and message
duplicates may be discarded. In sectionsec:analysisBlendingAndTransport, we emphasize
approaches allowing identification and censorship of VortexMessages and VortexNodes.

Bugging and tagging attacks are similar in terms that both try to follow a message to its
final recipient. While the goal is similar, the approaches are entirely different.

We refer to a bugging attack as an attack, which discloses the recipient by forcing him
to commit a disclosing action. Such an action may be the lookup of an unusual DNS
record, verification of some identifiable data (e.g., an OCSP request to verify a certificate), or
downloading an external image induced by an attacker.

A tagging attack allows an adversary to follow an attribute of a message through a network
and, thus uncover members of a network, subsequent messages, or even a final recipient.

Static information leaking of the protocol is another possibility of how an adversary may
learn IoIs on a network. Routing nodes are a vital part of any anonymity network. The most

146 CHAPTER 25. IDENTIFICATION OF ATTACKS AND MITIGATIONS

comfortable assumption is to trust nodes. In our case, we explicitly distrust routing nodes.
This means that we must identify and judge upon the footprint of available information to
such routing nodes, which is done in chapter 26. Especially in an environment of a censoring
adversary, the undetectability of a VortexNode is crucial, as any detectability may lead to a
shutdown or even repression. We elaborate in section 26.1 how to identify involved messages
and nodes.

25.2 Dynamic Attacks

Dynamic attacks usually involve an active adversary injecting malicious traffic. They are
quite often paired with statistical approaches to discover properties of the system otherwise
not available to an observer.

An active adversary may attack the transport layer. Most of the transport layers are not
able to react to message flooding. Therefore, it is easy to attack a transport layer with a
flooding attack, such as a distributed denial of service (DDoS) attack. Due to the nature of the
protocol, we cannot create additional protection on the transport layer as such modification
would require a modification of the transport layer. We analyze in chapter 27 the impact on
the MessageVortex system.

We have identified the following attacks relevant to our system:

• DoS attacks against the transport system

• DoS by traffic replay

• DoS by traffic generation

• Attacking a single ephemeral identity of a VortexNode

• DoS by exhausting quotas or limits

• Attacking sending and receiving identities of the MessageVortex system

• Traffic highlighting or traffic analysis

• Recovery of previously carried out operations

An active adversary may not follow the protocol and modify any parts of the message. The
following paragraphs reflect different types of behavior and how they affect the messages
and the system as a whole.

An adversary may not follow the blending specification. If he uses a less secure specification,
an independent third party observer may follow traffic. Such a behavior is not sensible as
such a node may directly send all knowledge to such a collaborating node. If a target node
does not support the chosen blending method, the partial message path becomes interrupted.
A possible redundancy in the path may recover the message from such a case.

Traffic replay is a common way to highlight traffic in many systems by replaying the same
traffic and increasing the signal to the noise ratio of a system. In our case, we can use the
replay of a VortexMessageblock to increase the traffic to a node. After decoding the header, a
VortexNode identifies the block as a repeated block and rejects further processing.

147

An adversary may replay blocks with varying content. Such replays will not result in a DoS
attack as the quota is not decreased on replayed messages (see fig. 17.1).

An adversary may first collect identities and quotas and use them later in a coordinated
attack to force the node processing. The adversary may increase the impact by using large
payloads and processing them in a costly manner. A possibility is to make extensive use of
addRedundancy or encryption operations. Furthermore, an attacker may attack the memory
by distributing the message throughout the workspace to exhaust the routers’ runtime
memory.

As a router is free to process the operations of identity, he may discard an ephemeral identity
and all associated resources at any time. Misbehaving or suspected misbehaving nodes may
thus be stopped. On the other hand, we are unable to prevent an adversary from allocating
new identities. We may, however, work with multiple local host keys and distribute them
according to the trust. A known party or someone trusted by them might receive a key
different from a publicly advertised key. This identity key may be dropped at any time
and distributed to further parties again with an identity update. We may even subdivide
trusted parties into several groups by updating them with different new host keys to identify
misbehaving routers without knowing them.

26 Static Analysis

26.1 Analysis of the Blending and Transport Layer

The blending layer is one of the key factors for confidentiality in an environment affected
by a censoring adversary. We refer to the confidentiality of the presence of a VortexNode as
detectability. Detectability of messages and systems, in consequence, leads to the ability of
censorship by an adversary. We assume that general censorship on the transport layer (e.g.,
by blocking all SMTP traffic) is not an option.

In an observing adversary environment, confidentiality regarding the presence of messages
is not required, as we defined in those environments legal to use MessageVortex. In such
environments, plain embedding may be used at any time.

26.1.1 Identifying a VortexMessage Endpoint

Depending on the blending method, a single, identifiable message is sufficient to identify a
VortexNode. Detectability depends on various factors such as:

• Broken internal file structure (due to plain blending)

• Uncommon high entropy in a structureless file

• Unrelated message flow (see [76])

• Non-human behavior on the transport layer (e.g., message traffic 24x7)

If an endpoint is successfully identified, all peering endpoints of the same protocol may be
identified as well by following the message flow. However, this does not enable an adversary
to inject messages as the host key is not leaked.

148 CHAPTER 26. STATIC ANALYSIS

Assuming a global observer and unencrypted traffic, the observer might discover the origi-
nating routing layer and thus identify it as VortexNode by following traces of the transport
layer. However, in most protocols this address is spoofable and not a reliable source for the
originating account.

As we specified machine communication for our messages, the Dead Parrot problem [76] is
not an issue as it only follows human communication. Thus, our system does not have to
pass a Turing test. Having messages sent with a non-human behavioral pattern (e.g., 24x7) is
therefore not an issue either, as well as sending unrelated messages to an unstable set of
endpoints.

26.1.2 Analysis of the F5-Embedding Method

A routing node must embed the VortexMessage into a generated image. Sending the same
image multiple times without any generated content will look very suspicious as the same
image sent multiple times but with a different fingerprint is not normal behavior. While we
may adopt message sending code from open source products, it is not perfect as anyone
may know what types of messages are affected. In return, this means that any message not
heavily customized is suspicious. To make things worse, modifying the text may be relatively
easy while modifying the content of generated imagery is more difficult.

From the technical point of view, the specification for the blending layer is complete. By
specifying only one steganography algorithm, we cannot switch algorithms which makes the
blending layer potentially weaker as there is no seconding algorithm such as PQt providing
crypto-agility. While F5 has been available for many years, no paper has been published
proving the algorithm’s detectability. F5 was analyzed and showed remarkable resistance to
conventional attacks. Detectability depends on the density of embedded data. A payload of
5–10 percent is currently not deemed detectable in a real-world environment [58]. Many
other algorithms such as nsF5, PQt/PQe, HUGO [123], S-UNIWARD [74], MiPOD [147],
or HILL [95] have been evaluated, but algorithms offering a solid implementation are rare
nowadays. An implementation in Java was not available for any of the mentioned algorithms.
Considering that it is far more difficult to provide a solid implementation than some emulation
code for academic purposes, the lack of this is understandable yet makes it very difficult to
either incorporate algorithms or test their robustness under realistic conditions.

Hiding a VortexNode from a censoring adversary means that we have to generate credible
traffic for sending messages containing imagery roughly 10–20 times as big as the embedded
payload. The carrier messages require properties, which makes them assignable to a service
instead of a user as the source of the message (e.g., personalized evaluation documents,
status information, password recovery messages, or statistics). These messages should have
constantly sized attachments as it would be typical for a process to generate messages always
following the same patterns. Such a size restriction for an embedding image is one of the
caveats for larger messages as adaptive image size is easily detectable by an adversary.

26.2 Analysis of Plain Embedding

It is undeniable why a file treated with plain embedding is easily identifiable as a broken or
tampered file. Its use is undeniable when looking at the fact that almost 100% of the carrier
media may be used. While the information may remain parseable, its content is no longer

149

sensible to a human and thus at least suspect. Therefore, plain embedding is not suitable for
use in environments with a censoring adversary and may be seen as a very weak obfuscation
in an observing adversary’s environments.

We wanted to know if there was a simple method to detect the modifications of such a
file. While most of the analysis method requires processing of large data sets, we tried to
find apparent, non-calculation-intense test methods that were generic. We did not take
any content-based method into account as they require high calculation power. As our
embedding is generic, we searched for a similar detection method. While this argument
is weak, we already agreed that plain embedding is not suitable for environments with a
censoring adversary.

A property of encrypted ciphertext is the high entropy. Therefore, we used the Shannon
entropy calculation in bytes as property and tried to show the entropy shift within the
files. This detection method depended very much on the type of file used for embedding. It
showed the expected behavior that file types with a similar entropy in the expected area
were not detectable by this method. However, we identified some file types to be unsuitable
for plain blending due to their entropy structure.

We analyzed the files by calculating the entropy of blocks 256 bytes with a sliding window
over a randomly collected set of images (e.g., the first 100 entries of a file type after searching
for “mouse”, “cat”, “camel”, or “dog”). We did intentionally not filter or eliminate images.
Surprisingly, we were able to tell file types apart and identify files with thumbnails or an
interlaced structure. We even identified certain specific patterns regarding the producer type
of an image (e.g., we could differentiate between pictures scanned or taken by a camera). It
was not so surprising that we were able to identify these features, but the fact that we could
see them in entropy data was remarkable.

150 CHAPTER 26. STATIC ANALYSIS

Figure 26.1: Distribution Analysis of Different, Common Graphics Formats.

Figure 26.2: Distribution analysis of a MessageVortex block.

We then carried out an analysis identifying the typical entropy and the inner structures. The
graphs in fig. 26.1 show a typical analysis. In that specific case, we looked at 100 images of
each type. We graphed and analyzed their entropy and tested for the suitability of a plain
embedding from an entropy poi. Table 26.1 lists the average entropy of analyzed file types
and makes remarks about the suitability for plain embedding. In practice, we found that
most suitable file formats have an entropy of ≈ 7.2 and an interquartile range (IQR) of 0.15 or
less. Furthermore, files should have a big, uniform, non-structured range of octets containing
these characteristics. Such a file has a suitable space for embedding. For reference, fig. 26.2
shows the distribution of typical MessageVortex blocks. We found that the entropy must be
uniformly matched in the case of plain embedding.

When blending into images, BMP showed a strongly varying entropy within a file. A sampling

151

aaaaa
Type

Criteria Avg. Entropy IQR Remarks

JPG 7.008 0.097 –
PNG 7.116 0.086 –
GIF 6.978 0.194 –
BMP 2.997 4.964 not suitable
PDF 6.660 0.282 Difficult to embed due to a very complex inner structure but well suited
MP3 7.076 0.091 –
WAV 4.777 0.927 –
OGG 7.104 0.093 relatively easy to embedd. Difficult not to break the file structure.
mpg4 n/a n/a good to embedd. Steganography could be applied here easily too.
zip 7.148 0.080 easy to embedd when using “password protected” archives

MVaes 7.176 0.072 Without length padding as reference encrypted with AES 256 CBC
MVcam 7.175 0.070 Without length padding as reference encrypted with Camellia 256 CBC

Table 26.1: Comparison of potential transport layer.

of ten blocks at random position already resulted in detection with a false positive rate below
5%. PNG and JPG files showed to be very robust within the sample. We did not succeed in
identifying the MessageVortex blending content based on entropy values. GIF images showed
to be unsuitable. Archive formats such as zip files were extremely robust. We were able to
embed it into a zip file and marking it (generically) as an encrypted file. This embedding was
genuinely undetectable. However, such embedding may potentially lead to censorship based
on the blacklisting of encrypted zip files.

OGG and MP3 are suitable. However, we were able to detect the entropy difference when
taking extremely dense samples. These formats may however be suitable for not yet stan-
dardized forms of steganography. While PDF typically has low entropy and a high IQR, some
parts of the files are very well suited for embedding. Plain embedding with knowledge of
the format was even possible without affecting the visual result of the file.

We could show that with an approach based on Shannon entropy, we may identify plain
embedded VortexMessages in BMP and WAV files.

All movie formats performed similarly to jpg and PNG. However, due to the very complex
structure with scattered blocks, they seem to be unsuitable for plain embedding. They are
however strong candidates for steganography and are being used.

26.3 Analysis of Routing Layer

26.3.1 Analysis of Core Operations

The core operations form a toolset for mixing messages. Under the operational restrictions
outlined in section 22.1, we analyze in the following section the operations and determine
their capability for leaking information or affecting security.

26.3.1.1 Splitting and Merging

The operations splitPayload and mergePayload are the trivial operations of our operations
set. The operations by themselves leak some information under the assumption that they
were previously encrypted. A split or merge operation on its own leaks possible counterparts
as the size should add up to a blocksize common in symmetric cryptography. As we outlined
in section 13.2.6.3 and section 22.1 either an encryption step or an add redundancy step has
to be added before a VortexNode may forward the block to the next layer. When doing so,
we can say that the operation leaks no more than any cryptographically secure operation.

152 CHAPTER 26. STATIC ANALYSIS

For a VortexNode executing the operation, a split operation does not leak any additional
properties. The input may be payload or not. Therefore, the output of the operation has the
same properties as the input. Unless the VortexNodes knows the incoming payload’s nature,
the output may be either decoy or true message traffic.

26.3.1.2 Encryption and Decryption Operations

All encryption steps leak some properties. They may leak the algorithm due to the block
size. The chosen parameter may be unique to the RBB. If randomly chosen, this is no
longer the case. If chosen by an implementation-specific pattern, the pattern may leak the
implementation over time. As the analysis must be completed over a short period (the
lifetime of an eID), it is up to an RBB to leak as little information as possible. However, we
regard the cryptographically secured content as secure.

26.3.1.3 Add and Remove Redundancy Operations

During analysis, the addRedundancy operation showed the undesirable behavior that apply-
ing the operation lowered the target blocks’ entropy, as shown in fig. 26.3.

Thus, we reconsidered the whole operation. The choice of the Reed–Solomon (RS)-operation
instead of a Lagrange polynomial seemed logical, as the possibilities to recover from cheaters
in an RS setting of varying contexts have already been studied in [104], [22], and similar
publications.

26.4 Knowledge of a Node Sending the First Message

A sender of a VortexMessage, not equal to the RBB, may have knowledge about the initial
routing block size and, therefore, guess the routing path’s complexity. He is however,unable
to gain any additional information such as time of travel or number of hops until the target
is reached. The building instructions only leak minimal information which may also include
some ideas about the routing block’s complexity.

As with every routing node, the next hops are leaked to the sender. Again this is carried out
without leaking the next hop’s host key.

26.5 Intermediate Node Routing Layer

An intermediate node knows all the operations applied and the immediate next hop. It learns
the routing addresses of the immediately following endpoints but is unable to use these
endpoints. This inability is based on the fact that the node has no means to obtain the host
key required to communicate.

If a routing block is repeated, a router may identify the routing block as repetition. Identifying
the repetition of a block can be achieved by looking at the serial number of replay protection.
We then may give a rough estimate of the message size by comparing the payload chunks.

153

Figure 26.3: Entropy of addRedundancy with and without the encryption step.

However, this estimate is very rough as it is bound by the block size of the symmetrically
applied encryption.

26.6 Security of Protocol Blocks

To analyze the security of the protocol, we first investigate all protocol blocks. Then we look
at the possibilities of block recombinations and how to gain data or ervices based on such
behavior.

Assuming plain embedding, the presence of a chain of blocks may leak an existing VortexMes-
sage. Currently, the protocol expects at the blending offset size and number of the bytes to
be skipped to the next block. The encoding does not assume an end of the chain marker as
such a marker would make the design identifiable. As an encoding scheme, a variable byte
length was chosen. This variable byte length guarantees that any file will always result in a
valid chain of blocks and thus not leak such a presence.

The entropy of the only two blocks in this stream (MPREFIX and InnerMessageBlock) is
comparable as both blocks are encrypted. Both blocks are encrypted and feature a similar
entropy. The blocks follow each other without any delimiter. This results in a continuous
stream of data with constant properties.

To avoid repeating patterns at the beginning of streams due to reused identity blocks, a
MURB must provide sufficient peer keys and prefix blocks. However, a VortexNode may

154 CHAPTER 27. DYNAMIC ATTACK ANALYSIS

refuse to process MURBs (only accept maxReplays equal to 0).

All blocks of the InnerMessageBlock are protected by the peer key EKpeer . The forward secrets
in all blocks except the payload blocks ensure that the recombination of blocks does not
work for an adversary. To be successful, an adversary requires to know the forward secret of
the next hop.

To keep the secrets of the next node hidden from the host assembling the message, the
subsequent header and the routing block are protected by the sender key EKsender . A message
assembling node is thus not even capable of creating its own messages to an unknown node
as the hosts’ public key EK1

host is not derivable from a message.

Therefore, a routing node cannot assemble messages for a specific host on the basis of only
a routed message. A routing node does not gain any additional knowledge except for the
locally executed operations, the number of messages of the ephemeral identity, the size
of messages of any ephemeral identity, the sending IP of a received VortexMessage, and
the transport endpoint address of any receiving endpoint. The most critical information
is endpoint data, as all other data is unrelated to the original message (sender recipient
and size). This information becomes crucial if assuming a censoring adversary. Therefore, a
sender in a jurisdiction where MessageVortex is deemed illegal must use only trusted nodes
within the jurisdiction and at least for the first hop outside the jurisdictional reach of an
adversary.

27 Dynamic Attack Analysis
In the dynamic analysis, we reach out to an active adversary. An active adversary modifies
traffic in a non-protocol conforming way or misuses available or obtained information to
disrupt messages, nodes, or the system as a whole.

27.1 Well-Known Attacks

In the following sections, we emphasize on possible attacks to anonymity preserving protocols.
Such attacks may be used to attack the anonymity of any entity involved in the message
channel. In a later stage, we test the protocol for immunity against these classes of attacks.

27.1.1 Broken Encryption Algorithms

Encryption algorithms can become broken at any time. Our protocol is especially susceptible
to this as it offers no perfect forward secrecy (PFS) on the transport layer. This either due to
new findings in attacking them, by more resources being available to an adversary, or by
new technologies allowing new kinds of attacks. A proper protocol must be able to promptly
react to such threats. This reaction should not rely on a required update of the infrastructure.
Users should solely control the grade of security.

We cannot wholly prevent such attacks from happening. However, we can introduce a choice
of algorithms, paddings, modes, and key sizes to give the user a choice in the degree of
security he wants to have.

We introduced a way to support a set of independent cryptographic algorithms, paddings,
modes, and prngs. The support of these algorithms does not have to be uniform throughout

155

the system. Instead, it is sufficient for two neighboring nodes to support the same algorithms
in order to be used.

Another way of minimizing the impact of reduced security of encryption algorithms is to
use long host keys. If an algorithm’s security is only reduced by a few of bits instead of
being broken, then a long key minimizes the impact and ay buy some time to switch to an
alternate algorithm.

A broken algorithm is severe if it leads to the decryption of the final messages on the recipient
node. In such a case, an adversary would be able to rebuild the content of a workspace and
thus effectively enable the adversary to obtain the message’s content.

27.1.2 Attacks Targeting Anonymity

Attacks targeting users’ anonymity are the main focus of this work. Many pieces of infor-
mation can be leaked, and the primary goal should rely on the principles established in
security.

• Preventing an attack
Attack prevention can only be achieved for attacks that are already known and thus
may not be realistic in all cases. In our protocol, we have strict boundaries defined. A
node under attack should at any time of protocol usage (excepts forbandwidth depletion
attacks) be able to block malicious identities. Since establishing new identities is costly
for an attacker, he should always require far more resources than the defender.

• Minimizing the attack surface
This part of the attack prevention is included by design in the protocol. By minimizing
the information footprint we have in each operation and the disconnection between
two eIDs of the same sender, it is very difficult to gain additional information based on
statistical means.

• Redirecting an attack
Although the implementation does not do this, it is possible to handle suspected mali-
cious VortexNode differently (e.g., avoid using them or only use them for decoy traffic,
not disclosing identities).

• Controlling damage
For us, this means leaving as little information about identities or meta-information
as possible on untrusted infrastructures. If we leave traces (i.e., message flows or
accounting information), they should have the least possible information content and
expire within a reasonable amount of time.

• Discoveruing an attack
The protocol is designed, so that attack discovery (such as a query attack) is possible.
However, we consider active attacks just as part of the regular message flow. The
protocol must mitigate such attacks by design.

• Recovering from an attack
An attack always imposes a load onto a system’s resources, regardless of its success. It
is vital that a system recovers almost immediately from an attack and is not covered in
a non-functional or only partially functional state either temporarily or permanently.

156 CHAPTER 27. DYNAMIC ATTACK ANALYSIS

In the following subsections, we list a couple of attack classes that were used against systems
listed in chapter 10 or the respective academic works. We list the countermeasures which
were taken to deflect these attacks.

27.1.2.1 Probing Attacks

Identifying a node by probing and checking their reaction is commonly achieved when
fingerprinting a service. As a node is participating in a network and relaying messages probing
may not be evaded. However, it may be costly for an adversary to carry out systematic
probing. This should be taken into account. Both currently specified transport protocols
feature an indefinite number of possible accounts. Since not the server but the endpoint
address behaves, node probing is more complicated than in other cases where probing of
service is sufficient.

One of the problems is cleartext requests. These requests may be used on any transport
layer account without previous knowledge of any host key. Thus the recommendation in
table 18.1 is generally not to answer the requests. Routing nodes in jurisdictions not fearing
legal repression or prosecution may reply to cleartext requests, but it is usually discouraged
as they allow the harvest of VortexNodes. A discovered VortexNode may leak subsequent
nodes if the same account is used for receiving and sending.

One strategy to avoid this would be to put high costs onto cleartext requests so that a
cleartext request may have a long reply time (e.g., up to one day).

A node is free to blacklist an identity in case of an early reply. This is an insufficient strategy
as a strong adversary may have many identities in stock. Requesting an unusually long key
as a plaintext identity does not make sense either, as these as well may be kept in stock.
However, we may force a plaintext request to have an identity block with a hash following
specific rules. For example, we may put in a requirement that the first four bytes of the hash
of a header block correspond to the first four characters of the routing block. At the moment,
this was rejected in the standard for practical reasons. First, as the request is unsolicited,
a sender is the only one able to decide the hash’s algorithm. This would allow a requester
to choose upon the complexity of the puzzle. Second, any negotiation of the request’s cost
would result in the disclosure of the node as VortexNode, which might be unsuitable.

27.1.2.2 Hotspot Attacks

Hotspot attacks aim to isolate high traffic sites within a network. By analyzing specific
properties, or the general throughput locations with outstanding traffic may be identified.
These messages quite often reveal senders or recipients. Sometimes even an intermediate
node in an anonymizing system.

The assumption that a hotspot arises at a specific point in our protocol is wrong. At any point
in the lifecycle of a message, either payload blocks are left out until expiry, or additional
traffic may be generated using an addRedundancy operation.

27.1.2.3 Message Tagging and Tracing

When using an anonymization system, a message may be either fully or partially traced or
even tagged. Tagging allows one to recognize a message at a later stage and map it to its

157

predecessors. Protocols with tagable messages are not suitable for anonymization systems.

VortexMessages are not tagable. The constraint “no repeating pattern” prohibits the forward-
ing of any block without an appropriate operation. This denies the possibility of tagging
a payload block. All other blocks (prefixes, header, and routing block) are discarded when
forwarding the message. The same applies to the carrier message, which is used as transport
for the blended VortexMessage.

Injecting a value into a payload block and following it would imply that the evil VortexNode
has knowledge about all subsequent operations and keys, which is equivalent to being
aware of the subsequent private keys of the VortexNodes. We will cover this scenario in
section 27.1.2.7.

27.1.2.4 Side-Channel Attacks

Side-channel attacks are numerous. Especially important to us are attacks related to either
lookup in independent channels (e.g., downloading of auxiliary content of a message) or
behavior related to timing patterns.

27.1.2.5 Sizing Attacks

There are two types of sizing attacks identified as relevant for us. One is the possibility
of matching messages with related sizes, and the other is to relate message size to the
original messages. Both attacks may be considered as a tracing attack and will be analyzed
accordingly.

When matching messages in size, an attack is attractive if it allows collapsing the operations
of one or multiple honest VortexNodes between two malicious VortexNodes. To do so, the
second evil node may match the sizes of the received payload blocks and hypothesize about
which blocks are equal, or it may assign the eID of the first evil node to the eID of the second
node. The matching is not trivial, as. . .

1. The sizes are likely to have changed while being transferred through the honest nodes.

2. The number of payload blocks may have changed.

3. The size may have been further obfuscated because an onionized encryption does either
not add to the size (if an algorithm with the same block size is applied and no padding) or
is increases (by the block size). Obfuscation is possible as well, if we apply a splitPayload
or mergePayload operation with a subsequent encryption (mandatory to not violate
the “repeating pattern rule”) or an addRedundancy operation.

27.1.2.6 Bugging Attacks

Numerous attacks are available through the bugging of a protocol. In this chapter, we outline
some of the possibilities and how they may be countered:

• Bugging through certificate or identity lookup:
Almost all types of proof of identity, such as certificates, offer some revocation facility.
While this is a perfect desirable property of these infrastructures, they have a flaw. Since

158 CHAPTER 27. DYNAMIC ATTACK ANALYSIS

the location of this revocation information is typically embedded in the proof of identity,
an evil attacker might use a falsified proof of identity with a recording revocation point.

There are multiple possibilities to counter such an attack. The easiest one is to carry
out no verification at all. Having no verification is however not desirable from the
security point of view. Another possibility is only to verify trusted proof of identities.
By doing so, the only attacker could be someone with access to a trusted source of
proof of identities. A third possibility is relaying the request to another host either by
using an anonymity structure such as Tor or using its infrastructure. Using Tor would
violate the “Zero Trust” goal. Such a measure would only conceal the source of the
verification. It would not hide the fact that the message is processed. A fourth and
most promising technology would be to force the sender of the certificate to include a
“proof of non-revocation”. Such proof could be a timestamped and signed partial CRL.
It would allow a node to verify a certificate’s validity without being forced to disclose
itself by carrying a verification. On the downside, including a proof of non-revocation
involves the requirement to accept a certain amount of caching time to be accepted.
This caching cycle reduces the value of the proof as it may be expired in the meantime.
It is recommended to keep the maximum cache time as low as 1d to avoid that revoked
certificates may be used.

• Bugging through DNS traffic:
A standard protocol on the Internet is DNS. Almost all network-related programs use it
without considering effects on anonymity. Typically, the use of such protocol is only
a minor issue since an ISP usually makes the resolution of a lookup. Normally an ISP
would not keep a query log as such logs tend to become big, and their information
content is comparatively low. In the case of a censoring adversary, an ISP may be forced
to keep such a log or to provide access to the adversary.

The bugging in general attack works as follows: We include a unique DNS name to
be resolved by a recipient. This can be carried out most easily by adding an external
resource such as an image. A recipient will process this resource and might therefore
deliver information about the frequency of reading or the type of client.

It must be taken into account that the transport layer will always carry out DNS
lookups and that we may not avoid this attack completely. We may however minimize
the possibilities of this attack.

• Bugging through external resources:
A straightforward attack is always to include external resources into a message and
wait until they are fetched. In order to avoid this type of attack, plaintext or other
self-contained formats should be used when sending a message. As we may not govern
the type of contained message, we can make at least recommendations concerning its
structure.

27.1.2.7 Analysis by Building Interaction Graphs

Building interaction graphs is very difficult to accomplish with our system. Although we
cannot quantize the effect, we still may elaborate on the difficulties. We first look at our
system from an outside view and then do the same for a powerful adversary inside the
system.

159

0 1 2 3 4 5 6

tim
e

0 1 2 3 4 5 6

tim
e

0 1 2 3 4 5 6

tim
e

0 1 2 3 4 5 6

tim
e

0 1 2 3 4 5 6

tim
e

0 1 2 3 4 5 6

tim
e

0 1 2 3 4 5 6

tim
e

path
1

path
2

path 3

path 4

pa
th

5

pa
th

6

Figure 27.1: A randomly generated graph with highlighted paths to the target.

When looking from outside the system, interaction graphs are difficult to build as sending
and receiving transport addresses, and protocols do not match, which adds tremendously
to the complexity. An outside observer may not just observe a specific SMTP server. He
must track incoming messages, observe the user (typically obtaining the mail by IMAP) fetch
the messages, and then follow all possible connections to other infrastructures known to
be supported and asume to be outbound messages. By assuming that an outside observer
is able to identify all VortexMessages and surpass all difficulties involved in following the
different protocols. Then such an observer is capable of generating a graph having as nodes
all VortexNodes and as edges all VortexMessages. An adversary would then require the means
to identify the sender and recipient. We first claim that there is no possibility to identify such
senders and recipients as there is no guaranteed minimum or maximum time for a message.
As an immediate result, any VortexNode sending a message may be a sender of a message or
only a router. Inversely, any VortexNode receiving a message may be either a recipient or a
router. Due to the operations, sizes may increase or decrease on message paths. Therefore,
an outside adversary is unable to match two adjacent messages to the same identity. Any

160 CHAPTER 27. DYNAMIC ATTACK ANALYSIS

previous message, including all subsequent messages, may have triggered the sending of
the message. So from an outside perspective, we have no possibility to identify by message
pattern, message size, or message sequence adjacent messages.

We assume the example routing graph, as shown in fig. 27.1.

From an inside perspective, we take additional information into account. First, if an adversary
has control over a routing node, he is aware of all operations carried out by this node. He
knows the immediate sender and the immediate recipient of any immediately subsequent
messages. If the adversary has control over two or more adjacent VortexNodes, he is able to
collapse the operations into one big workspace with the combined operations, whereas the
message transfer may be reflected in a simple mapping operation. He is also able to identify
subsequent messages using the same eIDs as messages of the same RBB. He is, however,
unable to tell whether or not two subsequent incoming VortexMessages for the same eID
belong to the same or to two different messages. If the same RBB maintains multiple eIDs
simultaneously on the same routing node, the node is unable to match from those eIDs to
the same RBB as they share no common properties. In a worst-case scenario, this means
that all routing nodes chosen by the RBB, with the exception of the sender node and the
final recipient node, are under the control of an adversary. This would effectively collapse
an interaction graph to a reduced graph, as shown in fig. 27.2. An adversary learns that
there are two adjacent nodes to his network (node 0 and 1). Such an adversary is however
unable to tell whether node 0 was an initial sender, as any incoming message into node 0,
regardless of its source or timing, may have been the cause for the original message sending.
Arguing the same way, we may say that either node 0 or 1 cannot be the recipient for sure
as any other outgoing message, regardless of timing or size, may have been triggered by the
incoming target, and the final recipient may be any subsequent node.

0 1 2 3 4 5 6

0

3

3

3

others

5

5

1

0

Extracted paths

0 Start node

1 End node

n Routing node

Related traffic

Unrelated traffic

Figure 27.2: The graph of 27.1 assuming all nodes except node 0 and 1 are evil.

We can therefore tell that we need to trust the sending and receiving node to be safe.
Furthermore, we need additional traffic generated by any non-collaborating VortexNode. The
fact that there are neither timing nor sizing constraints makes it impossible to match any
two messages to the same original sender. Therefore, our message is not traceable if there is
additional traffic going through our trusted nodes, and honesty of the initially sending node
as well as the final recipient node is assumed.

161

27.1.3 Denial of Service Attacks

27.1.3.1 Censorship

Whereas traditional censorship is widely regarded as selective information filtering and
alteration, very repressive censorship can even include the denial of information flows in
general. Any anonymity system not offering the possibility to hide in legitimate information
flows is therefore not censorship-resistant.

27.1.3.2 Denial of Service

An adversary may flood the system in two ways.

• He may flood the transport layer exhausting resources of the transport system.
This is a straightforward attack. MessageVortex has no control over the existing transport
protocol. Therefore, all flooding attacks on that layer are still effective. However, if an
adversary attacks a node, the redundancy of a message may still be sufficient. On the
other hand, flooding disrupts at least all other services using the same transport layer
on that node. This result may be unacceptable for an attacker. More likely would be
censorship.

• He may flood the routing layer with invalid messages.
Identifying the messages is relatively easy for a node. Usually, it should be sufficient to
decode the CPREFIX block of a message. If the CPREFIX is valid, then the header block
either identifies a valid identity or processing may be aborted.

• He may flood an accounting layer with newIdentity.
Flooding an accounting layer with identities is possible. Since the accounting layer is
capable of adapting costs to a new identity, it may counter this attack by giving large
puzzles to new identities. This affects all new identities and not only those flooding. If a
flooding attack is carried out over a long time, a node may decide to split its identity. All
recent active users receive a new identity, whereas the old one opposes high costs. This
would force an attacker to work in intervals and is no longer able to make a permanent
DoS attack.

27.1.3.3 Credibility Attack

Another type of DoS attack is the credibility attack. While not a technical attack, it is very
effective. A system without a sufficiently big user base is offers thus a lousy level of anonymity
because the anonymity set is too small or the traffic concealing message flow is insufficient.

Another way is to attack the reputation of a system in such a way that the system is no longer
used. An adversary has many options to achieve such a reduction in credibility. Examples
are:

• Disrupting the functionality of a system.
This may be achieved by blocking the messaging protocol it uses or by blocking messages.
Furthermore, an adversary reduces functionality when removing known participants
from the network either by law or by threat.

162 CHAPTER 27. DYNAMIC ATTACK ANALYSIS

• Publicly disputing the effectiveness of a system.
Disputing the effectiveness is a very effective way to destroy a system. People are not
willing to use a system that is believed to be compromised if the primary goal of using
the system is to avoid being observed.

• Reducing the effectiveness of a system.
A system may be considerably loaded by an adversary to decrease the positive reception
of the system. He may further use the system to send UBM to reduce the overall
experience when using the system. Another way of reducing effectiveness is to misuse
the system for evil purposes such as blackmailing and making them public.

• Disputing the credibility of the system founders.
Another way of reducing the credibility of a system is to undermine its creators. For
example, if people believe that a founders’ interest was to create a honey pot (e.g.,
because he is working for a potential state-sponsored adversary) for personal secrets,
they will not be willing to use it.

• Disputing the credibility of the infrastructure.
If the infrastructure is known or suspected to be run by a potential adversary, people’s
willingness to believe in such a system is expected to be drastically reduced.

27.1.3.4 Denial of Service by ExhaustingQuotas or Limits

A malicious node may try to exhaust quotas or limits. As we trust the sender and recipient,
all other nodes are unaware of the forward secrets used in the message. The options for an
adversary are then as follows:

• Resending a MURB (with different content) as often as possible to exhaust message and
transfer quota.

• Creating intentionally huge, incorrect message content to exhaust transfer quota.

27.1.4 Attacking Sending and Receiving Identities of theMessageVor-
tex System

An adversary’s most valuable goal is breaking an entity’s anonymity or monitoring their
traffic by the content or the metadata. In the following sections, we analyze the possibility
of determining the sender or recipient of a message.

27.1.4.1 Traffic Highlighting

Traffic caused by a routing block may be observed to a certain extent on a statistical basis.
A node may generate bad message content of exceptionally large or small nature. Such
messages might potentially highlight messages involved in message routing using no split or
relative split operations as well as addRedundancy operations.

163

27.1.5 Recovery of Previously Carried out Operations

An adversary must be unable to recover parameters of a previously carried out operation.
We analyzed the protocol operations carefully to ensure not to leak any of the parameters.
Some operations leak apparent data, such as an encryption operation with a block cipher
typically leaks its block size. However, this was classified as invaluable data as the block size
does not result in any information gain usable for attacking the system or narrowing down
efforts. In fig. 26.3, we can show that the parameters are visible. We took the same 10kb block
and treated it with all possible combinations of operation parameters. The image shows
that there is a possibility of guessing the parameter with a high probability. For guessing,
the average Monte Carlo Pi and the average Shannon entropy in bits per byte were already
sufficient. The results became less clear when applying the same operation to random blocks
while carrying out the analysis.

We have however found a flaw in the addRedundancy operation. When applying this op-
eration to an encrypted block, the resulting block’s entropy leaks some of the operation
parameters. As a result of this finding, we added a custom padding and an additional encryp-
tion step. The repeated analysis showed that the operation no longer leaks these parameters
through this channel.

27.2 Side Channel Leaking

We tried to minimize the number of possible side channels. Some of the side channels are
irrelevant as trusted nodes control them. Some side channels remain unavoidable unless we
restrict messages to an unrealistic minimum.

27.2.1 Software Updates and Related Data Streams

We consider assuming in today’s world that updates are not needed for security reasons
a foolish thing. However, downloading a software update may uncover a user. While it
is feasible to transport software unseen once, transporting software on a regular basis is
a tedious job. Therefore, we included a standard way of querying a new software release
and receiving the new release over the MessageVortex protocol allowing the same degree of
privacy as with all other messages sent. While the path itself is cryptographically secured,
we recommend that the code should still be signed, and the signature should be verified
before upgrading to a new software version.

27.2.2 Bugging in Transported Messages

Bugging in transported messages is possible as we have no clear definition of the content
of a message. As the transport is currently XMPP and SMTP, the assumption of sending
MIME-encoded messages is obvious. The availability of clients and the simple feasibility
of gateways make it an obvious choice. If we use MIME as transport encoding, we may
leak certain attributes such as the reading location of a message to a sender by including
external images or signing the message with a certificate whose verification authority is
tapped. Since we trust the sender and recipient node and assume that the RBB is one of
them, this argument does not count towards any of the messages. Any other intermediate

164 CHAPTER 27. DYNAMIC ATTACK ANALYSIS

routing node has no means of injecting any content into the message or the routing bloks.
Therefore, in terms of bugging protocol messages, our protocol is rather secure.

This statement leaves some interesting questions unanswered. First, when creating an eID on
an intermediate node, we have to analyze this situation as well as trust the target node (the
node on which an eID is allocated), which in such a situation is most likely not trustworthy.
While the node is a final node for the request, the node is not regarded as the final destination
for a message. In that specific case, the reply block the node receives maps not to ID 0, but
32767 (see table 17.1). This difference keeps a routing node to misuse the reply block for
sending a bugged message.

27.2.3 Exploiting MURBS

Multi-Use Reply Blocks (MURBs) are another source for a side-channel attack. While
technically safe, the possibility of creating repeating patterns over a network causes the
possibility to recognize the communication pattern. As we have no strict timing for sending
our messages, this pattern discovery remains a not easily solvable problem. To make it even
more difficult, we restricted the reuse of a MURB by design to 127 times and included the
possibility to of using different prefix blocks in each message. Without these prefix blocks,
the pattern would have been easily identifiable as the prefix block would have formed a byte
sequence that would have been detectable in all messages using the same MURB.

Replaying a message built with a MURB does not necessarily require identifying VortexMes-
sages. It is sufficient to store and replay a suspected message and trying to analyze whether
a related communication pattern is visible. The pattern reflects all messages which are
triggered by the message. As an adversary is unaware whether he replayed the first or an
intermediate message, he cannot tell whether he was able to observe the full graph or just
a subset. Furthermore, the graph generated by the replaying (assuming that the replay
protection did not catch the message) may be smaller, as other parts of the message traveling
through other nodes may not have been replied to, leading to non-sendable messages.

If we assume that an adversary identifies all messages and involved VortexNodes of a MURB,
we have two things to consider. In an environment of a censoring adversary, the confiden-
tiality of VortexNodes is compromised. Additionally, in an observing adversary environment
with many MURBs, high replay ratios, and small routing sets, we would be able to build a
list of the routing set an unknown VortexNode has, leading to pseudonymity for that node.
We cannot see how this could be further exploited, but this fact should be mentioned.

To weaken the threats of MURBs, we eradicated all needs for MURBs within the protocol. A
MURB has only to be used when a user decides to do so, and we recommend not using them.

27.3 Achieved Anonymity and Shortcomings

27.3.1 Measuring Anonymity

It is tough to measure anonymity, as it involves many uncontrollable factors. We may however
control the degree of anonymity according to the number of involved parties. Assuming
a sender knows the complete message path, including all operations carried out on any
untrusted node a message travels through, the anonymity is maxed to the number of involved

165

nodes n, excluding the sender nodes. This degree of n − 1 may be further reduced if all
well-known “routing only” or at least “routing mostly” nodes are reduced. Under these harsh
assumptions, the set may be reduced to the potential set of “well known” recipients of a
message.

We have to differentiate between several problems. An adversary has to identify the par-
ticipants of an anonymity system. Then he has to identify members of a message or a
communication anonymity set. Starting from there, he has to identify message flows and
detect senders and receivers of messages within an anonymity set (which is not feasible in
all cases). If any adversary achieves this, we have to consider the anonymity to be broken.
Depending on the degree of anonymity required, which is influenced by external factors, the
participation in any or a small enough set may be sufficient to suffer consequences.

27.3.2 Attacking Routing Participants

While very difficult in our case as we do not have “dedicated” anonymization infrastructure,
it might be possible to identify the routing network members due to flaws in the blending
layer. It is possible to scare off or block members of a routing network. It is far more difficult
in a network where the members are mobile. Any user may change his identity, including
the endpoint, without losing its known peers by notifying known communication partners
about the change. This unique property makes the participating entities very mobile and
allows them to switch servers at any time without losing contact with peers for subsequent
communication.

Routing participants may be identified either by publicly available information (e.g., published
routing address) or by identifying unique properties of the protocol. The transport layer
provider may then be forced to de-anonymize the customer related to the account (if possible),
or the relating account on the transport layer may be blocked.

To counter a possible threatening de-anonymization, a VortexNode owner must maintain
anonymity towards the transport layer provider. Presently, this is easily achieved the XMPP
protocol. The account is typically not linked to any subsequent user information, such as
telephone number or email. Email accounts are more restrictively regulated. Providers of
accounts without registration of phone numbers or subsequent email addresses exist (e.g.,
Yandex) but are rare. In both cases, a user might be identified by its IP address. This is why
concealing the IP address while connecting to the transport layer is an advisable practice.
Using Tor when accessing the transport layer may suffice. The anonymizing service has to
be strong enough to conceal the IP. The protection of the traffic itself is not required as it is
already protected.

27.3.3 Attacking Anonymity through Traffic Analysis

As traffic and decoy traffic are chosen by the RBB, frequency patterns cannot be detected,
unlike the router that created them. The same applies to message sizes and traffic hotspots.
When reusing the same routing block, eventually message sizes or general estimates such as
“bigger” or “smaller size” can be made.

For an evil routing node, even paired with a global observer, it is difficult to extract any useful
information. An adversary might identify all messages following through it as messages of the
same true identity. As ephemeral identities are short-term identities, this is of limited value.
By monitoring the endpoints used by an ephemeral identity, we might calculate a “likelihood

166 CHAPTER 27. DYNAMIC ATTACK ANALYSIS

of matching” for two ephemeral identities. Luckily this is not feasible without allowing
a high factor of uncertainty. This matching does not improve when combining multiple
ephemeral identities over time. The matching might slightly improve when attempting to
match ephemeral identities on different routing nodes. Making strong statements about
those likelihoods is not possible as we did intentionally not define a specific behavior. We
may safely say that the possibility of de-anonymization is degrading if using short-lived
ephemeral identities.

The knowledge a node may gain from ephemeral identities is minimal. The ephemeral
identity is created by a node unknown to the receiver of the request. The only thing we
know is what node was adjacent when creating the ephemeral identity. As the creation of
an ephemeral identity is not linked to any other identity or ephemeral identity relationship
between ephemeral identities on two nodes cannot be established. If two adjacent nodes
cooperate when processing two linked ephemeral identities, no additional knowledge may
be won. If two collaborating nodes have one or more non-collaborating nodes between them,
they lose all linking knowledge due to the non-collaborating nodes.

Operations were carefully crafted to leak as little information as possible. Being able to
encrypt or decrypt a payload block does not leak any information. The data processed may
be true message traffic or decoy as we do not know the nature of the received message. If
an RBB avoids repeating patterns of blocks on nodes, it is impossible to link the ephemeral
identities of two non-adjacent nodes. For example, repeated patterns may arise if a block
pb1 is decrypted and re-encrypted on two nodes. In this case, both nodes may match the
message as it contains the same content between the operations.

node f:

pb2 = D(pb1

pb3 = EKt(pb2)
node f+1:

.

.
node f+x:

pb4 = DKt(pb3)

In this example the patterns of pb3 and pb4 = pb2 are two patterns repeating on non-
adjacent nodes. The same conclusions are even more valid for splitting operations. These two
operations should be regarded as helpers for the addRedundancy and removeRedundancy
operations. These operations may be used to generate decoy traffic or destroy data without
knowledge of the processing node. If we process a function addRedundancy2o f 3, any of the
output blocks contains the input payload, and any two of them may be used to recover
the data. At the same time, an operation removeRedundancy2o f 3 may be successful or not.
The node is unable to differentiate between the two states. The padding applied and the
unpadded encryption makes it impossible to judge on the success or fail of an operation.

As the communication pattern is defined by the RBB and is not always the same, it is difficult
to judge the security. However, we may look at some generic examples and show that we
can achieve the goals of Byzantine fault tolerance, privacy and unlinkability, and anonymity.
fig. 27.3 shows a sending node s, a series of routing nodes ni, j assembled to routing chains.

167

Furthermore, we have a r for which the message is destined and a set of nodes ak building
the anonymity set. Neither the number of chains j nor the length of the chains i is relevant.
A node or a sequence of nodes may be part of multiple chains. By normalizing a path into
such a form, we may at least analyze some protocol properties. We furthermore have to keep
in mind that we trust sender s and receiver r. Any possible routing block may be reduced to
this scheme if knowing the exact building instructions applied by the RBB.

VortexNode
Related VortexMessage
Unrelated VortexMessage

Routing node n1, j

Routing node ni, j

Routing node n1,1

Routing node ni,1

sender s

anon a1 anon ak receiver r

Figure 27.3: A possible path of a VortexMessage.

We must consider that two adjacent nodes collaborating may build one combined workspace
to execute all operations. Therefore, they are able to link all operations of these two adjacent
nodes and follow all incoming and outgoing paths. Therefore, we may assume that two
adjacent nodes or an uninterrupted series of collaborating nodes may be substituted by one
node.

A routing node n1, may not know if a VortexMessage received from s is the result of processing
another message or the message was injected on node s. Furthermore, if s was acting as
a routing node, it successfully unlinked the message from any previous node. The sending
node s may send a message by first employing an addRedundancy operation or splitting and
encrypting the message. Each path through the streams has then not enough information
to rebuild the combined message. If employing an addRedundancy operation, a receiver r
may recover a message if sufficient paths through the routing nodes were acting according
to the protocol. Paths with misbehaving nodes may eventually be identified depending on
the number of redundancy operations. Assuming that the RBB included proper padding
information for the receiver r, the receiver may identify what set of VortexMessagesleads
to the original message due to the padding applied before the RS function. So if sufficient
paths, depending on the chosen operations at r, provide correct data, we may recover nodes
misbehaving in our paths. If one node in a path is not collaborating with adjacent nodes in
the path, the path of the VortexMessagebecomes unlinked as previously shown with sender
s. If multiple paths are used, all paths must have at least one honest node to unlink the
message.

If all nodes in the anonymization set a1. . .ak are honest, any preceding node may not know
whether the message ends at that node or the message is just routed through an honest node.
Even if some of the anonymization nodes are not honest or collaborating with an adversary,

168 CHAPTER 27. DYNAMIC ATTACK ANALYSIS

the anonymity set may be reduced in size, but the receiver is still part of the anonymity
set spanning the honest anonymization nodes. Thus, we have shown that anonymity,
unlinkability, and fault tolerance against a misbehaving node may be achieved depending
on the chosen routing block. AN RBB may furthermore send additional VortexMessagesto
suspected misbehaving nodes. If misbehavior is reproducible within an ephemeral identity,
the RBB may identify it by picking up parts of the previously sent message and comparing
them to an expected state. An RBB may even introduce message paths leading back to the
RBB itself. Such a message path may allow observation of the progress and success of the
message delivery.

27.3.4 Attacking Anonymity through Timing Analysis

Timing is under full control of the routing block builder. No information can be derived
from the timing. This is even the case if a routing block is reused. The precise timing of the
network depends on other factors as well, such as delays through anti-UBE or anti-malware
measures or delays through local delivery between multiple nodes.

27.3.5 Attacking Anonymity through Throughput Analysis

Increasing the throughput to highlight a message channel is impossible since the replay
protection will block such requests. It may be possible for a limited number of times by
replaying a MURB. This is one of the reasons why the usage of MURBs is discouraged unless
necessary.

27.3.6 Attacking Anonymity through Routing Block Analysis

The routing block is cryptographically secure. The size of the routing block may leak an
estimate about its inner complexity. It does not reveal any critical pieces of information like
remaining hops to the message end or target or similar.

27.3.7 Attacking Anonymity through Header Analysis

The header contains valuable data that is cryptographically secured and only visible to the
next receiver.

To an adversary not knowing the key, the prefix block’s size may leak the key size. However,
this is a minor issue as the header is structureless and may not be identified.

To an adversary knowing the decryption key (evil routing node), the header block’s content
is visible. This header block leaks all routing information for the respective node and thus
the ephemeral identity. This block leaks some information of minimal value. It may leak the
activity of an ephemeral identity, including frequency. However, this activity only matches
the minimal activity of an endpoint identity as an endpoint may have multiple ephemeral
identities on one node.

169

27.3.8 Attacking Anonymity through Payload Analysis

The payload itself does not leak any information about the message content. All content is
cryptographically secured. Content may, however, leak the block size of the applied cipher.

27.3.9 Attacking Anonymity through Bugging

Bugging is one of the most pressing problems. The protocol has been carefully crafted not to
allow any bugging. However, the use of MIME messages in the final message enables the
bugging of the message itself. A bugged message content may breach receiver anonymity to
the sender of the message.

27.3.10 Attacking Anonymity through Replay Analysis

Due to the replay protection, no traffic may be generated or multiplied except for the
attacking node’s traffic. As this information is already known to the node, there is no value
in doing so.

27.3.11 Diagnosability of Traffic

27.3.11.1 Hijacking of Header and Routing Blocks

An attacker might try to recombine a third party’s header block with a routing block crafted
to get the workspace content of a different node. To protect against this scenario, every
routing block and its corresponding header block has a shared value called forwardSecret.
As the content of a hijacked header block is unknown, the attacker cannot guess the forward
secret within the block.

It is not possible to brute-force the value due to the replay protection. More precisely, the
probability of hijacking a single identity block is 1

232 . Hijacking such a block allows one-
time access to the working space and is visible to the owner due to the manipulated quotas.
Failing an attack will result in deleting the ephemeral identity, and a new, unlinked ephemeral
identity will be created.

27.3.11.2 Partial Implicit Routing Diagnosis

We can create data that is routed back to or through the original sending node. This traffic
is well defined and may be used to certify that the loop processing the message is working
as expected. By combining the messages and sending intermediate results through multiple
paths, it is even possible to extract some loops’ sub status and combine the result within
transfer into a single message.

As a special case, a sender may use implicit routing diagnostic to diagnose the full route. A
sender may achieve this by taking specific excerpts of the received message at the recipients’
node and route these blocks back from the recipient to the sender.

170 CHAPTER 29. DEGREE OF ANONYMIZATION IN COMPARISON

27.3.11.3 Partial Explicit Routing Diagnosis

If a message fails to deliver according to an implicit routing diagnosis, additional messages
may be sent to collect the content of the workspace of ephemeral identities throughout
the path. These messages are, due to the only binding to the ephemeral identity, not
distinguishable from the original messages. Assuming that a node always behaves either
according or not according to the rules of the system, a node may be identified by capturing
built blocks with known content.

If a node is identified as a misbehaving node, it may be excluded from subsequent routing
requests or reduced in its reliability or trustability ratings. A node may calculate such scores
locally to build a more reliable network over time, avoiding misbehaving or non-conformant
nodes. This does not violate our zero-trust philosophy as the scoring is made locally and
relies on our observations.

28 Analysis of the Effectiveness of Attack Schemes
In the previous sections, we have identified some potential technical weaknesses of the
protocol. These weaknesses condensed to the following recommendations:

• Avoid using MURBs (SURBs are not a problem)

• Avoid fixed/repeating patterns or sub-patterns when routing

• Keep workspace (eID) lifetime short

• Avoid linking two different workspaces on the same node

• Ensure that each sub-path of a message contains at least one trustworthy node or two
non-collaborating adversaries.

A routing node may further improve the effectiveness of the protocol by. . .

• Create credible decoy content.

• Use different addresses on the transport level for sending and receiving..

• Use long host keys.

29 Analysis of Degree of Anonymization MessageVortex
in Comparison to other Systems

It is difficult to make a clear statement in terms of anonymity. To allow a comparison, we
work with traditional anonymization systems and compare them to our system and outline
the differences.

29.1 Comparing MessageVortex to Remailers

All remailer systems are identifiable due to their traffic. We leave aside simple remailer
types such as nym remailers and concentrate solely on the most advanced type-3 remailer

171

(Mixminion). Although development has been seized, we can still compare our system’s
effectiveness compared to a Mixminion system.

Mixminion is an onion routing system working with a fixed message size of 32KB. It relies
on a central directory containing all nodes. This is a functionality we can rebuild with
MessageVortex by using the decrypt operation. Unlike with the MessageVortex system,
Mixminion relies on a public directory. Even compared with a hypothetical system having
steganographically hidden services and only locally known routing nodes, our system scores
in the following way over a Mixminion router:

• No detectability due to timing-related constraints.
Mixminion had no synchronized timing constraints. Messages were sent as soon as the
subsequent message node was known and the message decrypted. This behavior makes
a node identifiable as it is not a common pattern.

• No detectability due to constant sizing of the messages.
Messages were equally sized into 32KB chunks.

• No identifiable goal in the case of identified messages by a global observer.
An observing adversary able to match message sizes may identify messages in a low
traffic network and identify sender and recipient.

• Possible resistance against a Byzantine node. A Byzantine node would disrupt commu-
nication in a Mixminion system. On the other hand, MessageVortex may compensate
for such behavior with the possibility of redundant data.

• Possibility of redundant routes (addRedundancy operation or just redundant message
transfer).
Messages were assembled according to their sequence number. The possibility of
redundant routes is not foreseen in the protocol.

• Possibility of monitoring successful delivery.
Within the Mixminion protocol, there are no means defined to get delivery reports.

• Able to build a localized trust relationship for routing nodes over time.
As we have the possibility to identify successful message delivery within MessageVortex ,
we may build a localized trust.

Both protocols share some common strengths, such as the possibility to specify routing
nodes by the sender of a message or the possibilities of reply blocks.

Having the possibility of mimicking a type 3 remailer and improving the communication
scheme makes our system superior to such an improved type 3 remailer. An unmodified
type 3 remailer cannot work in an environment with a censoring adversary as defined in this
work due to its detectability.

29.2 Comparing MessageVortex to a DC Network-Based
System

A DC network may not be built with our MessageVortex protocol. However, if we add a
hypothetical XOR operation, we may build such a system. In the early stages of development,

172 CHAPTER 29. DEGREE OF ANONYMIZATION IN COMPARISON

recipientnode 3

node 2node 1

node 0sender

node n Node

Message

Figure 29.1: A typical Mixminion mix cascade.

we had an XOR operation. When analyzing our system, we were unable to discover good
use-cases for such an operation. We assume that the sender and recipient are part of the DC
network ring. If not, additional problems regarding entry and exit nodes would prevail.

When comparing such a hypothetical MessageVortex system with an XOR operation with an
again hypothetical DC network using steganographically hidden messages, we conclude that
MessageVortex could mimic the behavior of such a network. Making further comparisons
along those lines, we have to say that MessageVortex scores in the following ways over such
a hypothetical system:

• No detectability due to timing-related constraints.
DC networks send messages as an immediate result to the subsequent node. Messages
are assumed to be sent as soon as the subsequent message node is known, and the
current message has been processed. This behavior makes a node identifiable as it is
not a common pattern.

• No detectability due to constant sizing of the messages.
Messages in a DC network may or may not be fixed in sizes. They have, however, a
constant size per round. This constant sizing makes involved nodes identifiable.

• Possible resistance against a Byzantine node. A Byzantine node would disrupt com-
munication in a standard DC network system. On the other hand, MessageVortex may
compensate for such behavior with the possibility of redundant data.

• Possibility of redundant routes (addRedundancy operation or just redundant message
transfer).
Messages are transferred as a block. The possibility of redundant routes is typically not
foreseen in DC networks.

• Possibility of monitoring successful delivery.
Within DC networks, there are no means defined to have delivery confirmations.

• Able to build a localized trust relationship for routing nodes over time.
As we have the possibility to identify successful message delivery within MessageVortex ,
we may build a localized trust.

173

Additionally, in a typical DC network, the set of involved nodes is fixed and known. This
leads to the problem that the discovery of one network node leads to the full discovery of a
ring or even more. If the sender and receiver are not part of the DC network ring but use
entry and exit nodes, the involved parties’ discovery is even simpler as a global observer may
focus on these nodes’ traffic.

Having the possibility of mimicking a DC network and improving the communication scheme
would make our system superior to such an improved DC network. An unmodified DC
network cannot work in an environment with a censoring adversary as defined in this work
due to its detectability. The ring-like communication pattern, as described in fig. 29.2 is very
uncommon in standard Internet protocols and thus easily detectable by a global observer. In
an observing adversary environment, the peer partners may not be anonymous due to their
traffic from and to the DC network ring.

node 0

node 1
node 2

node 3

node 4

node 5
node 6

node n Node

Message

Figure 29.2: A typical DC network communication pattern.

29.3 ComparingMessageVortex to a Broadcast-Based Sys-
tem

A broadcast-based network (BCN) hides a message transfer so that every involved node
sends an equally sized message or decoy traffic to all other members of the system. By doing
so, they build a full mesh of equally sized messages between all involved nodes, making
it impossible for an adversary to identify who was sending message traffic and who was
sending a true message. Messages sized larger than a simple message transmission are split
up into multiple messages. Again, we were unable to find a system that does not use an own
censorable protocol. We therefore,assume again a hypothetical BCN piggybacking a common
Internet protocol. In this part, we make two comparisons: One comparison involving a BCN
with only one mesh and a second one with a BCN cascading multiple overlapping BCNs,
which we refer to as a cBCN. In both cases, the communication mesh, as shown in fig. 29.3,
is identifiable as this is a very unusual communication pattern in common Internet protocols.

A BCN is a high-load network with a very suspicious and uncommon communication pattern

174 CHAPTER 29. DEGREE OF ANONYMIZATION IN COMPARISON

node 0

node 1
node 2

node 3

node 4

node 5
node 6

node n Node

Message

Figure 29.3: A typical broadcast network communication pattern (full mesh).

in Internet protocols. MessageVortex may rebuild such behavior by crafting routing blocks
that trigger such a message pattern. Assuming no overlapping pattern, it would always expose
the sending node as the first node sending a message. In such a case, privacy would be equal
with a single peer broadcast, as shown in fig. 29.4. When assuming an overlapping pattern, a
first node is no longer identifiable when using a full mesh in the case of a VortexMessage.
Atom [86] cascades multiple BCNs into a cBCN. To achieve a cBCN, Atom relies on a central
directory infrastructure. Additionally, to a simple BCN, Atom offers zero-knowledge proofs.

node 0

node 1
node 2

node 3

node 4

node 5
node 6

node n Node

Message

Figure 29.4: A reduced broadcast network communication pattern (single broadcast).

In the following section, we compare MessageVortex mimicking a BCN to a traditional BCN.
We assume again that the transport layer is steganographically secured comparable to
MessageVortex.

In such a case, we may conclude that MessageVortex scores over a BCN...

• Equal detectability due to timing-related constraints.
If MessageVortex is mimicking a BCN, timing is essential. Therefore, detectability

175

remains the same for both systems. We could argue that a MessageVortex could mimic an
adapted version of a BCN not working in epochs and just mimicking the communication
pattern. While this would make a difference in traceability, it does not affect detectability
positively or negatively.

• No detectability due to constant sizing of the messages.
Traditional BCNs have fixed message sizes. MessageVortex may mimic the communi-
cation pattern with or without such a restriction. The message size may not leak any
properties when using MessageVortex . Messages may travel in parts or as a whole piece.

• Possible resistance against a Byzantine node. A Byzantine node may disrupt communi-
cation in a standard BCN by flooding the network. On the other hand, MessageVortex
may compensate for such behavior with the possibility of redundant data. If we assume
that a Byzantine node is not flooding the network completely, a BCN is likely more
robust than a network of VortexNodes. A BCN will score at least better if the direct path
between the sender and recipient is not affected by the Byzantine node.

• Possibility of redundant routes (addRedundancy operation or just redundant message
transfer).
Messages are transferred as a block. The possibility of redundant routes is typically not
foreseen in a BCN.

• Possibility of monitoring successful delivery.
By default, a node has no means to observe successful delivery in a BCN. Using Mes-
sageVortex , we may do this either by implicit or explicit diagnostic covering one or more
epochs.

• Able to build a localized trust relationship for routing nodes over time.
As we can identify successful message delivery within MessageVortex , we may build
a localized trust. A traditional BCN lacks this possibility. Extended networks such as
Atom may surpass this limitation.

To conclude, MessageVortex may offer at least the same properties as a BCN or cBCN. Unlike
Atom, which is unable to offer zero-knowledge proofs. As an alternative, MessageVortex offers
diagnostics. By using multi-path message transfer, MessageVortex may reduce bandwidth
waste and improve throughput. These capabilities of MessageVortex come at the price of
local node storage, complex routing operations, and RBB strategies. On the other hand,
processing and scalability of MessageVortex do surpass Atom’s capability by far as the rather
complex processing of Atom is very limiting.

30 Recommendations on Using theMessageVortex
Protocol

The following sections list recommendations using the MessageVortex protocol. It is a
summary of the previous sections.

30.1 Reuse of Routing Blocks

Routing blocks should not be reused if avoidable. The reuse of a routing block may leak some
limited information to an adversary node, such as the approximate message size or message

176 CHAPTER 30. RECOMMENDATIONS ON USING THE MESSAGEVORTEX PROTOCOL

frequency of an unknown tupel using this network.

When using MURBS with a high replay count, a traffic pattern may be identifiable in the
network used and thus allow an adversary to identify a message flow.

30.2 Use of Ephemeral Identities

Ephemeral identities should be used for a minimal number of messages. Using multiple
identities with overlapping lifespans is considered a good practice. Using different ephemeral
identities for the same message is acceptable and can be a good practice as long as operations
do not leak the linking between those two identities.

Special care must be taken if using overlapping ephemeral identities across nodes. While
ephemeral identities may be completely unlinked on a single node, linking multiple nodes
may leave a trace from one identity to the next. It is advisable to recreate regularly all
ephemeral identities from scratch. This guarantees an unlinking from previous ephemeral
identities.

30.3 Recommendations on Operations Applied on Nodes

All operations carried out on a single node have to be crafted so that no information, whether
the operation is a decoy or a real message, is leaked. Otherwise, it becomes possible to
narrow down the message flow.

Encryption operations should be either strictly encrypting or strictly decrypting. At no point
in the path, a previously applied encryption on an untrusted node should be removed as
removal might lead to linking to the previous inverse operation.

Similarly, there are rules for adding and removing redundancy information. As these op-
erations serve as decoy traffic generators, great care needs to be taken not to leak this
information. Again, we emphasize that it is possible to add redundancy information on one
node, encrypt one or multiple blocks once, or multiple blocks on a second node, and then
remove the redundancy information again from the new set. This will lead to a payload
data block than the original. However, this does not qualify the block as decoy traffic. The
process may be reversed on the final recipient. However, such an operation is mathematically
very demanding if the same operation is used for redundancy at the same time as multiple
possible tuples need to be tried if one node has failed.

Whenever possible, the reappearance of a payload block in a single encoding should be
avoided or limited to an absolute minimum. Such an occurrence allows the linking of two
ephemeral identities.

30.4 Reuse of Keys, IVs, or Routing Patterns

An RBB should avoid the reuse of any keys, IVs, routing patterns, or PRNG seeds along its
routing path of untrusted nodes. Reusing such values would allow an attacker to match
ephemeral identities to a single identity. While this is minimal risk and may be ignored in
some cases, an RBB should avoid it as it may leak information to collaborating nodes.

177

30.5 Recommendations on Choosing involved Nodes

Involved nodes should be trustworthy but not necessarily trusted. A message should always
include a set of known recipients. It is regarded as good practice to use a minimal fixed
anonymity set of known recipients as routers. Doing so does not leak any information unless
always the same pattern of operations is applied (see section 30.1).

30.6 Message Content

Although it is possible to embed any content into a VortexMessage, great care should be
taken as the content may allow disclosing a reader’s identity or location. For this reason,
only self-contained messages should be used (such as plaintext messages).

Allowing a user to use more complex representations such as MIME offers many possibilities
for the bugging of the content. A client displaying such messages should always handle
them with great care. Taping messages by downloading external images or verifying the
validity by OCSP, or even carrying out a reverse lookup on an IP address may leak valuable
information.

30.6.1 Splitting Message Content

Message content may be split and distributed among routing nodes. Splitting should, however,
not be done excessively to avoid failure due to too many failing nodes. It furthermore makes
diagnostics complicated.

To split a message into multiple parts and add redundancy information simultaneously, the
addRedundancy operation should be used instead.

30.7 Routing

The basics of routing are described in section 13.2.4.2. We collect in the following sections
the recommendations regarding the routing strategies.

30.7.1 Redundancy

Redundancy is a valuable feature of the protocol. It allows unsuspicious decoy generation
and to compensate message path disruption. A routing block should always be crafted so
that redundancy is aligned with the complexity of the routing block and the importance of a
message to avoid an adversary controlling all nodes except for the sender’s and receiver’s
one.

Furthermore, predeployed diagnosis blocks within the message path are a good possibility
to simplify the possibility of explicit routing diagnosis.

178 CHAPTER 30. RECOMMENDATIONS ON USING THE MESSAGEVORTEX PROTOCOL

30.7.2 Operation Considerations

Operations should be kept easy, but at the same time, guarantee anonymity. The following
recommendations are kept to an absolute minimum in order not to create any identifiable
behavior.

A payload block should always have a single representation only once when traveling through
routing nodes. A recurring pattern would allow an evil router to identify and thus match an
ephemeral identity of one router to an ephemeral identity of another router, even if there
are multiple routes in between. Thus, when applying encryption only operations between
routing nodes, the encryption should be onionized. A clear onionizing routing pattern (only
showing encryption steps on a single chunk) is OK. A pattern such as removing encryption
and then reapply different encryption is not.

30.7.3 Anonymity

Anonymity is greatly dependent on the routing block’s quality and the chosen anonymity
set for a single message and a communication tuple over time.

30.7.3.1 Size of the Anonymity Set

The requirement for an anonymity set is dependent on jurisdictional restrictions. In some of
the more restrictive countries, no one can be held accountable for an action that may not
be credibly assigned to him alone. In other jurisdictions, it is possible to be held liable for
actions just because of an identified membership in a group. This makes it essential that
message traffic and the crafting of the blending is under the sole control of the sender. He
needs to create an anonymity set sufficiently large and spanning enough jurisdictions to
create sufficient anonymity for his situation.

VIIIPa
rt

Discussion and Conclusion

Limit your inputs to only those that
support a certain kind of

self-destructive behavior, and you can
be cheered with enthusiasm as you

drive yourself off a cliff.

Adam-Troy Castro

180 PART VIII. DISCUSSION AND CONCLUSION

181

In this chapter, we outline the main results of our work. We emphasize the weaknesses and
concentrate on the technologies able to complement our new protocol.

31 The Achieved Properties of the Protocol

31.1 Measuring up to the Requirements

This section analyzes the level of achievement concerning the requirements defined in
section 11.2.1. We will elaborate on ach requirement and discuss the level of achievement. In
case of failure, we highlight reasons for the failure and elaborate on the consequences of the
current flaws. An overview of all requirements can be found on table 11.1 on page 55.

In our opinion, our system meets the requirement RQ1 (Undetectable) as long as the blending
layer obeys the criterion opposed to it. Assuming that the dummy content is not distinguish-
able from other traffic by a censoring adversary and F5 is not broken, then a VortexNode
should be truly undetectable from the outside.

The requirement RQ2 (equal nodes) is met as there is no difference in the nodes. All nodes
serve as possible endpoints, and all nodes carry out routing. There is no technical difference
between the nodes, which may allow differentiation between endpoints and anonymity
routers.

The requirement RQ3 (zero trust) is met in a wider sense. We do not require any trust in
any routing nodes. However, we need either message traffic to trusted nodes from a non-
cooperating adversary or an honest VortexNodes with additional traffic within our anonymity
set.

The requirement RQ4 (unlinkability) is under full control of an RBB. The RBB controls the
number of hops and the nodes involved. He may therefore achieve unlinkability by combining
the operations accordingly.

The requirement RQ5 (anonymization) is met if not assuming an adversary within the sys-
tem. It furthermore can be accomplished in various grades (k-Anonymity) by the RBB if an
adversary is within the system running nodes by the RBB. In such a case, all independent
message paths of a VortexMessage must contain at least one honest VortexNode with addi-
tional traffic. As soon as this condition is true, an adversary can no longer conclude any
potential anonymity set. Even the sender and recipients alone may be sufficient, assuming
additional traffic is being routed through these nodes.

The requirement RQ6 (accounting) is fulfilled as all elements required for accounting have
an expiration date. Requests beyond that date are discarded. The information to be kept
is limited to an absolute minimum and may accommodate multiple 100K identities per
VortexNode.

The requirement RQ7 (untagable) is fulfilled as no pattern may be followed through the
network. All information visible to an outside or inside observer is discarded at the following
node.

The requirement RQ8 (unbugable) is only partially met. As we did not specify the type
of payload that may be transported but suggested MIME-encoded messages, bugging is
possible. However, message bugging in MIME-encoded messages is well known. Most of the
clients offer appropriate countermeasures such as suppression of external imagery loading
and similar. When sticking to the recommendation to send text-only messages, bugging is

182 CHAPTER 31. THE ACHIEVED PROPERTIES OF THE PROTOCOL

not possible.

The requirement RQ9 (unreplayable) is only partially fulfilled. As we allowed the use of
MURBS, replaying a message is possible. As it is an optional feature and normal messages
have replay protection, this flaw’s impact is minimal and intended.

The requirement RQ10 (bootstrapping) remains one of the major flaws of our protocol. This
flaw has systemic reasons. The possibility of discovering VortexNodes in an environment of a
censoring adversary, no matter how built, is enabling the adversary to harvest a network of
nodes. It subsequently means that any possibility of narrowing down potential nodes may
be hazardous in such an environment. We believe that, unless we have broadly accepted
protocols using broadcast into huge domains, a protocol may not solve the problem of
identifiable peer nodes. We, furthermore, believe that such protocol support is unlikely to
arise due to bandwidth reasons.

The requirement RQ11 (algorithmic variety) is met as we have built in the possibility to vary
any algorithm. Wherever possible, we named and included independent alternatives based
on different mathematical problems into the standard. It is furthermore possible to signal
non-standard algorithms. As long as two nodes support the same standard, they are capable
of communicating.

In our eyes, the requirement RQ12 (easy handleable) turned out to be the least successful of
all. While we may automate the MessageVortex protocol and all its needs in an observing
adversary environment, the use in an environment of a censoring adversary is not possible for
a non-savvy individual or a small organization. This is because the dummy traffic generated
to carry VortexMessages has to be individualized and credible. Coding skills are required to
meet this requirement, which opposes to RQ12 (easy handleable). While not unsolvable, we
consider this problem as difficult to solve.

The requirement RQ13 (reliable) can be met in various degrees. The degree of reliability
depends on the number of stable working nodes in an anonymity set and the strategy chosen
by an RBB to build the routing block. We consider this requirement as met.

The requirement RQ14 (transparent) is met in our opinion as we offer the possibility to
explicitly or implicitly diagnose the entire message traffic at any time.

The requirement RQ15 (available) is met as our system remains functional via alternate
message paths if a VortexNode is no longer functional. However, as we cannot adapt a
messages’ route, the system’s availability is controlled by the RBB.

We consider the requirement RQ16 (identifiable sender) as met as the protocol offers the
possibility to match two messages to the same sender (even if not knowing its identity) by
matching the eID. To keep this possibility for a recipient, both sender and receiver have to
collaborate as the sender needs to use the same eID for all messages, and the recipient must
allow usage of such eID for the entire period.

Overall, we consider this work in its current state as a partial failure due to the lack of the
requirement RQ12 (easy handleable). This miss causes the protocol to be only of limited use
to a single individual operating in a censoring adversary environment.

31.2 Achieved Level of Anonymity and Detectability

We have to emphasize when discussing anonymity that our system is unlike most other
systems. As we have an adversary defined that other systems do not withstand, we have

183

to compare anonymity on multiple levels. Within these levels, anonymity and detectability
complement each other as breaking detectability might lead to a node or a respective user’s
de-anonymization.

These layers relevant to anonymity or detectability are:

• The detectability of the system by. . .

– detecting or identifying transport layer accounts.

– detecting or identifying VortexNodes.

• The detectability and tracing of single VortexMessages.

• The traceability of a message over multiple VortexNodes.

• The identification of MessageVortex users by. . .

– the sending MessageVortex user

– the receiving MessageVortex user

– an adversary within the anonymity set

– an outside adversary

The detectability of a system depends on multiple factors. If the blending is detectable, a
VortexNode is identifiable and may uncover the respective user. In environments with a
censoring adversary, such identification may be deemed as dangerous. In such environments,
our system heavily depends on the individual implementation of the blending. In its current
state, coding skills are likely needed to remain undetectable as not following a pattern is
their key, and our standard implementation may be deemed a pattern. The traffic generated
for accessing a transport layer account is not especially susceptible to detectability as the
always-connected pattern is very common among devices and services these days. Special
care has to be taken if protocols offer housekeeping features for the transported messages.
In these cases, access patterns should match the chosen service pattern (e.g., delete INBOX
emails after 30 days). A node may be identifiable by the transport layer owner as an atypically
behaving user by not doing so.

Single VortexMessages may be detectable from the outside, as covered in the previous para-
graph. Apart from that, sending and receiving VortexNodes are always aware of the transport
layer address’s identity. This means that anonymity is no longer possible if a censoring
adversary is part of an anonymity set. In such a case, the adversary would be capable
of uncovering involved VortexNodes by harvesting node transport addresses over time. A
solution for this problem does not exist as long as we do not assume a widely deployed
protocol employing broadcasting (or at least multicasting) with huge domains.

Messages are not traceable as long as we have at least one honest or non-collaborating (to
the current adversary) VortexNode in a message path due to the message properties. As soon
as two adjacent VortexNodes collaborate, they may collapse all operations of the two into
one workspace.

Identification of MessageVortex users may be achieved in multiple ways. If an RBB composes
unsuitable routing blocks, anonymity is broken. We outlined before that MessageVortex may
build the same messaging patterns as Mix-, onion-, BC- or DC-networks but with additional
security-related features such as redundancy or the split of messages. In general, this makes
our protocol at least equivalent or even superior to the technologies mentioned earlier. Unlike

184 CHAPTER 33. MISSING RESEARCH

those systems, our system is not limited to specific message patterns, making our system
more suitable in an environment of a censoring adversary. A unique fingerprint of composing
messages may identify the sending user. He furthermore may be identified by bugging a
message sent with a reply block. For an outside observer, a sending user may be determined
if there is no additional traffic running over its routing node. Therefore, receiving traffic (to
be routed or not is irrelevant) adds to a message’s anonymity. The receiving user may be
identified by a bugged message. From the outside, a receiving user may or may not further
deliver messages. The same applies to any routing node. This does not give any indication of
a received message.

32 Weaknesses of the Protocol
The protocol has several weaknesses which we were unable to compensate accordingly. The
complexity of the algorithms for an RBB is definitely high compared to other protocols.
Nevertheless, it is possible for a single RBB to create and maintain a network of ready eIDs
for routing. Given a sufficient set of nodes, this routing works comparable to other protocols.
It scales very well under high loads as all nodes act independently, and no non-parallelizable
asks are within the whole system. However, once adequately bootstrapped, it is easy to
use as a user may use it with typical clients such as email clients and offers an unmatched
degree of anonymity in our belief.

33 Missing Research

33.1 Lack of Base Data

One problem we encountered is the lack of available statistical data regarding true Internet
environments. There is much data available that may be easily extracted (such as SNMP
MIBs). However, when it comes to true insights into the Internet, we have only very limited
data. There is some data available about censorship in China and in Turkey in our specific case.
It would have been tremendously welcomed if we had comparisons in the communication
patterns of persons. Questions about “What protocols are used to transfer messages either
in human-to-human or machine-to-human communication”, “Which types of attachments
are common among specific protocols”, or “What are common threats today” seem not
to be researched. There are some pseudo-scientific papers available, shedding light on
some questions. However, these papers do not follow scientific standards and are often
misunderstood to boost certain products. An excellent example of this trend are papers
describing the dangers solely from the perspective of anti-malware or firewalls, which
typically fail to list threats related to social engineering. Available data is often collected
cheaply by querying SNMP MIBs, using statistics collected by a product cloud, or by filtering
traffic of static sources list to identify streaming traffic. Continuously monitored and generally
available data about routed traffic within the Internet would have offered tremendous help
for our work.

185

33.2 Lack of Implementations

One of the actual weaknesses of the protocol lies in the lack of implementations available
for anonymity. Available implementations of steganographic algorithms in C/C++ or Java
are rare. Moreover, we were unable to find any partial essay of implementation for creating
dummy traffic. Therefore, one weakness may be found in the lack of adaptation of protocols
and algorithms from the scientific world. Most of the anonymity systems exist only as partial
implementation or as simulators. Especially an alternative available to the implementation
of F5 would be sensible and helpful. While such an implementation may be retrofitted in
the system, the lack in the current state is regarded as a weakness. The same may apply to
algorithms such as NTRUencrypt. While this algorithm was implemented and specified in
terms of encryption and decryption, a binary layout for the key was never specified. Such
layouts are, however, crucial for a world of inter-operation. The lack of such specifications
and implementations makes our implementation of MessageVortex weaker in portability.
We are, of course, capable of creating our implementation and specify our binary layouts.
However, such implementations lack a proper peer review and violate interoperability basics,
which are a major concern in all protocols.

The lack of other, comparable protocols makes the MessageVortex protocol weaker. Having
no real competitor in a class makes it very difficult to measure and compare a solution.
Assuming a censoring adversary is a hard-to-fulfill territory, most people instead seem to
focus on a single problem without true implementation than on a solution for a real-world
problem. Claiming that anonymity is solvable is acceptable in the authors’ eyes as long as
we can describe realistic real-world or clean slate approaches, and these approaches must
be implementable. The authors encountered multiple solutions, which were good ideas but
lacked a realistic view. Achieving in an environment where there is no inside observer or just
regional observers is straightforward but not realistic.

33.3 Further and Missing Research

The current blending layer is by far too simple in its inner workings. It creates contextless
messages based on an easily recognizable scheme and is not suitable to mimic human com-
munication. A good blending layer would be capable of mimicking not only machine-like
traffic but even human-like traffic. Atypical communication patterns such as 24x7 commu-
nication may be broken into typical patterns by mimicking three sending accounts with
different overlapping communication patterns. The system does not necessarily have to pass
a full Turing test. It would be sufficient to create credible human communication between
machines sounding human-like. Research in AI already succeeded in generating credible
communications between two robots. It is unknown whether such “small-talking” imple-
mentations would create credible content. As we defined that an adversary has enormous
but limited resources, this blending is sufficient if it is carried out “good enough” so that an
adversary cannot identify the traffic as generated content. What criteria would apply here is
a topic for further research. Applying more research to this topic would require adding a
more precise adversary model.

The currently applied choice of transport layer protocol is a snapshot of current Internet
traffic. While done with great care, it must be adapted to the changing communication
habits of humanity. Identifying new or depreciated communication protocols and blending
schemes would be another field of research.

186 CHAPTER 34. POTENTIAL AND IMPROVEMENTS

A comprehensive survey of the newest trends and techniques in steganography is another
topic to be covered. It would allow identifying new candidates for blending techniques. Of
special interest are steganography algorithms covering movie and audio file formats. This
may be especially interesting when it comes to mimicking other communication patterns
such as social network apps using voice messaging.

Anonymity has effects on the behavior of humans. We have found that although there is
some research in this field (such as [126]), the evidence is very weak. Although the possibility
of anonymity is undisputed among so-called free countries, the disadvantages (e.g., misuse
for criminal acts) of anonymity are apparent. More research in this field is required. On the
other hand, a lack of anonymity awareness, especially in “non-free” jurisdictions, has been
observed, which would be another relevant field of research.

34 Potential and Improvements

34.1 Improvements in Blending

Our current implementation is very rough and requires coding or individualization when
used in a censoring adversary environment. Generating the decoy traffic should be far better
feasible by using recent developments in deep learning (DL) and natural language processing
(NLP).

Such implementations would have the potential of generating undetectable decoy traffic.
While the current traffic is bound to machine-to-human communication, deep learning
implementations would have the possibility of building proper communication between two
artificial identities. The implementation would not have to pass a Turing test. Instead, it
would be sufficient if an outside observer cannot identify the communication partners as
“non-human” or “suspicious”.

34.2 Operations Agility

In our current implementation, operations are statically encoded. While the current set was
chosen carefully, it would have been better to, analogous to the requirement of crypto agility,
select a set of supported operations. Such selection possibility was forgotten at the start,
and adding it to the work’s current state turned out to be very challenging. Nevertheless, we
believe that such “Operations Agility” would add to the system’s value.

It would allow extending the system with new types of operations reflecting state-of-the-art
anonymity research without disrupting an existing network.

34.3 Simplified and Anonymity-Conformant Bootstrap-
ping

Bootstrapping is currently based on human-to-human communication. While this is possible
and, in most cases, feasible, it is impractical and reduces the ease of use of the system. The
handshake forces us to exchange transport endpoint addresses and node keys. We could

187

simplify our approach by introducing decentralized stores offering SURBs if a short common
secret is known. Analogous to a PIN when using WPS in a WiFi system, such small secrets
could be used to do the first handshake simplifying the tedious procedure a bit.

Such an approach will be secure if the rendezvous-point is under the control of an observing
adversary, as only the common knowledge of both short secrets allows the identification of
the SURB. By trying to brute-force the SURB, an adversary would invalidate the SURB on
its first use.

35 Closing Words
While working on our system, we were amazed at how broad the field of anonymity and
the number of means to attack anonymity is. Anonymity is, in our belief, achievable in any
environment. Depending on the type of anonymity and environment, it has a relatively high
price tag for the user. It will always be more comfortable to remain traceable than to be
anonymous. It is up to all researchers in the field of anonymity to reduce this pricetag. In
our belief, this is a topic research has to pursue in subsequent works. Our statement here
would be: Challenge accepted.

Our tool is neither good nor bad. Precisely as a crowbar is a useful household tool, it may be
misused to carry out illegal things or threaten life. On the other hand, recent development
in many countries shows that there is always an excuse for legislative power to intimidate
people not in favor of their opinions. Therefore, it is our firm belief that despite the inherent
disadvantages of all anonymity systems, they are necessary to keep at least the world as
free as it already is.

188 CHAPTER 35. CLOSING WORDS

IXPa
rt

Appendix

Limit your inputs to only those that
support a certain kind of

self-destructive behavior, and you can
be cheered with enthusiasm as you

drive yourself off a cliff.

Adam-Troy Castro

190 PART IX. APPENDIX

MessageVortex Protocol

Abstract
The MessageVortex (referred to as Vortex) protocol achieves different degrees of anonymity,
including sender, receiver, and third-party anonymity, by specifying messages embedded within
the existing transfer protocols, such as SMTP or XMPP, sent via peer nodes to one or more
recipients.

The protocol outperforms others by decoupling the transport from the final transmitter and
receiver. No trust is placed into any infrastructure except for that of the sending and receiving
parties of the message. The creator of the routing block (routing block builder; RBB) has full
control over the message flow. Routing nodes gain no non-obvious knowledge about the
messages even when collaborating. While third-party anonymity is always achieved, the protocol
also allows for either sender or receiver anonymity.

Workgroup: Internet Engineering Task Force
Internet-Draft: draft-gwerder-messagevortexmain-08
Published: 5 April 2021
Intended Status: Experimental
Expires: 7 October 2021
Author: M. Gwerder

FHNW

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that
other groups may also distribute working documents as Internet-Drafts. The list of current
Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 October 2021.

https://datatracker.ietf.org/drafts/current/

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

Gwerder Expires 7 October 2021 Page 1

A1

A The RFC draft document

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Requirements Language

1.2. Protocol Specification

1.3. Number Specification

2. Entities Overview

2.1. Node

2.1.1. Blocks

2.1.2. NodeSpec

2.1.2.1. NodeSpec for SMTP nodes

2.1.2.2. NodeSpec for XMPP nodes

2.2. Peer Partners

2.3. Encryption Keys

2.3.1. Identity Keys

2.3.2. Peer Key

2.3.3. Sender Key

2.4. Vortex Message

2.5. Message

2.6. Key and MAC specifications and usage

2.6.1. Asymmetric Keys

2.6.2. Symmetric Keys

2.7. Transport Address

2.8. Identity

2.8.1. Peer Identity

2.8.2. Ephemeral Identity

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 2

A2 APPENDIX A. THE RFC DRAFT DOCUMENT

2.8.3. Official Identity

2.9. Workspace

2.10. Multi-use Reply Blocks

2.11. Protocol Version

3. Layer Overview

3.1. Transport Layer

3.2. Blending Layer

3.3. Routing Layer

3.4. Accounting Layer

4. Vortex Message

4.1. Overview

4.2. Message Prefix Block (MPREFIX)

4.3. Inner Message Block

4.3.1. Control Prefix Block

4.3.2. Control Blocks

4.3.2.1. Header Block

4.3.2.2. Routing Block

4.3.3. Payload Block

5. General notes

5.1. Supported Symmetric Ciphers

5.2. Supported Asymmetric Ciphers

5.3. Supported MACs

5.4. Supported Paddings

5.5. Supported Modes

6. Blending

6.1. Blending in Attachments

6.1.1. PLAIN embedding into attachments

6.1.2. F5 embedding into attachments

6.2. Blending into an SMTP layer

6.3. Blending into an XMPP layer

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 3

A3

7. Routing

7.1. Vortex Message Processing

7.1.1. Processing of incoming Vortex Messages

7.1.2. Processing of Routing Blocks in the Workspace

7.1.3. Processing of Outgoing Vortex Messages

7.2. Header Requests

7.2.1. Request New Ephemeral Identity

7.2.2. Request Message Quota

7.2.3. Request Increase of Message Quota

7.2.4. Request Transfer Quota

7.2.5. Query Quota

7.2.6. Request Capabilities

7.2.7. Request Nodes

7.2.8. Request Identity Replace

7.2.9. Request Upgrade

7.3. Special Blocks

7.3.1. Error Block

7.3.2. Requirement Block

7.3.2.1. Puzzle Requirement

7.3.2.2. Payment Requirement

7.3.2.3. Upgrade

7.4. Routing Operations

7.4.1. Mapping Operation

7.4.2. Split and Merge Operations

7.4.3. Encrypt and Decrypt Operations

7.4.4. Add and Remove Redundancy Operations

7.4.4.1. Padding Operation

7.4.4.2. Apply Matrix

7.4.4.3. Encrypt Target Block

7.5. Processing of Vortex Messages

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 4

A4 APPENDIX A. THE RFC DRAFT DOCUMENT

1. Introduction
Anonymization is difficult to achieve. Most previous attempts relied on either trust in a dedicated
infrastructure or a specialized networking protocol.

Instead of defining a transport layer, Vortex piggybacks on other transport protocols. A blending
layer embeds MessageVortex messages (VortexMessage) into ordinary messages of the respective
transport protocol. This layer picks up the messages, passes them to a routing layer, which applies
local operations to the messages, and resends the new message chunks to the next recipients.

8. Accounting

8.1. Accounting Operations

8.1.1. Time-Based Garbage Collection

8.1.2. Time-Based Routing Initiation

8.1.3. Routing Based Quota Updates

8.1.4. Routing Based Authorization

8.1.5. Ephemeral Identity Creation

9. IANA Considerations

10. Security Considerations

11. References

11.1. Normative References

11.2. Informative References

Appendix A. The ASN.1 schema for Vortex messages

A.1. The Main MessageVortex Blocks

A.2. The MessageVortex Ciphers Structures

A.3. The MessageVortex Request Structures

A.4. The MessageVortex Replies Structures

A.5. The MessageVortex Requirements Structures

A.6. The MessageVortex Helpers Structures

A.7. The MessageVortex Additional Structures

Appendix B. Changelog

Author's Address

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 5

A5

A processing node learns as little as possible from the message or the network utilized. The
operations have been designed to be sensible in any context. The 'onionized' structure of the
protocol makes it impossible to follow the trace of a message without having control over the
processing node.

MessageVortex is a protocol that allows sending and receiving messages by using a routing block
instead of a destination address. With this approach, the sender has full control over all
parameters of the message flow.

A message is split and reassembled during transmission. Chunks of the message may carry
redundant information to avoid service interruptions during transit. Decoy and message traffic
are not differentiable as the nature of the addRedundancy operation allows each generated
portion to be either message or decoy. Therefore, all routing nodes are unable to distinguish
between message and decoy traffic.

After processing, a potential receiver node knows if the message is destined for it (by creating a
chunk with ID 0) or other nodes. Due to missing keys, no other node may perform this processing.

This RFC begins with general terminology (see Section 2) followed by an overview of the process
(see Section 3). The subsequent sections describe the details of the protocol.

1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in .

1.2. Protocol Specification
Appendix A specifies all relevant parts of the protocol in ASN.1 (see and

). The blocks are DER-encoded, if not otherwise specified.

1.3. Number Specification
All numbers within this document are, if not suffixed, decimal numbers. Numbers suffixed with a
small letter 'h' followed by two hexadecimal digits are octets written in hexadecimal. For
example, a blank ASCII character (' ') is written as 20h and a capital 'K' in ASCII as 4Bh.

[RFC2119]

[CCITT.X680.2002]
[CCITT.X208.1988]

2. Entities Overview
The following entities used in this document are defined below.

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 6

A6 APPENDIX A. THE RFC DRAFT DOCUMENT

2.1. Node
The term 'node' describes any computer system connected to other nodes, which support the
MessageVortex protocol. A 'node address' is typically an email address, an XMPP address, or other
transport protocol identity supporting the MessageVortex protocol. Any address SHOULD include
a public part of an 'identity key' to allow messages to transmit safely. One or more addresses MAY
belong to the same node.

2.1.1. Blocks

A 'block' represents an ASN.1 sequence in a transmitted message. We embed messages in the
transport protocol, and these messages may be of any size.

2.1.2. NodeSpec

A nodeSpec block, as specified in Appendix A.6, expresses an addressable node in a unified
format. The nodeSpec contains a reference to the routing protocol, the routing address within this
protocol, and the keys required for addressing the node. This RFC specifies transport layers for
XMPP and SMTP. Additional transport layers will require an extension to this RFC.

2.1.2.1. NodeSpec for SMTP nodes
An alternative address representation is defined that allows a standard email client to address a
Vortex node. A node SHOULD support the smtpAlternateSpec (its specification is noted in ABNF
as in). For applications with QR code support, an implementation SHOULD use the
smtpUrl representation.

This representation does not support quoted local part SMTP addresses.

[RFC5234]

localPart = <local part of address>
domain = <domain part of address>
email = localPart "@" domain
keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>
smtpAlternateSpec = localPart ".." keySpec ".." domain "@localhost"
smtpUrl = "vortexsmtp://" smtpAlternateSpec

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 7

A7

2.1.2.2. NodeSpec for XMPP nodes
Typically, a node specification follows the ASN.1 block NodeSpec. For support of XMPP clients, an
implementation SHOULD support the jidAlternateSpec (its specification is noted in ABNF as in

).[RFC5234]

localPart = <local part of address>
domain = <domain part of address>
resourcePart = <resource part of the address>
jid = localPart "@" domain ["/" resourcePart]
keySpec = <BASE64 encoded AsymmetricKey [DER encoded]>;
jidAlternateSpec = localPart ".." keySpec ".."
 domain "@localhost" ["/" resourcePart]
jidUrl = "vortexxmpp://" jidAlternateSpec

2.2. Peer Partners
This document refers to two or more message sending or receiving entities as peer partners. One
partner sends a message, and all others receive one or more messages. Peer partners are message
specific, and each partner always connects directly to a node.

2.3. Encryption Keys
Several keys are required for a Vortex message. For identities and ephemeral identities (see
below), we use asymmetric keys, while symmetric keys are used for message encryption.

2.3.1. Identity Keys

Every participant of the network includes an asymmetric key, which SHOULD be either an EC key
with a minimum length of 384 bits or an RSA key with a minimum length of 2048 bits.

The public key must be known by all parties writing to or through the node.

2.3.2. Peer Key

Peer keys are symmetrical keys transmitted with a Vortex message and are always known to the
node sending the message, the node receiving the message, and the creator of the routing block.

A peer key is included in the Vortex message as well as the building instructions for subsequent
Vortex messages (see RoutingCombo in Appendix A).

2.3.3. Sender Key

The sender key is a symmetrical key protecting the identity and routing block of a Vortex
message. It is encrypted with the receiving peer key and prefixed to the identity block. This key
further decouples the identity and processing information from the previous key.

A sender key is known to only one peer of a Vortex message and the creator of the routing block.

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 8

A8 APPENDIX A. THE RFC DRAFT DOCUMENT

2.4. Vortex Message
The term 'Vortex message' represents a single transmission between two routing layers. A
message adapted to the transport layer by the blending layer is called a 'blended Vortex message'
(see Section 3).

A complete Vortex message contains the following items:

The peer key, which is encrypted with the host key of the node and stored in a prefixBlock,
protects the inner Vortex message (innerMessageBlock).
The sender key, also encrypted with the host key of the node, protects the identity and routing
block.
The identity block, protected by the sender key, contains information about the ephemeral
identity of the sender, replay protection information, header requests (optional), and a
requirement reply (optional).
The routing block, protected by the sender key, contains information on how subsequent
messages are processed, assembled, and blended.
The payload block, protected by the peer key, contains payload chunks for processing.

•

•

•

•

•

2.5. Message
A message is content to be transmitted from a single sender to a recipient. The sender uses a
routing block either built by themself or provided by the receiver to perform the transmission.
While a message may be anonymous, there are different degrees of anonymity as described in the
following.

If the sender of a message is not known to anyone else except the sender, then this degree is
referred to as 'sender anonymity.'
If the receiver of a message is not known to anyone else except the receiver, then the degree is
'receiver anonymity.'
If an attacker is unable to determine the content, original sender, and final receiver, then the
degree is considered 'third-party anonymity.'
If a sender or a receiver may be determined as one of a set of <k> entities, then it is referred to
as k-anonymity .

A message is always MIME-encoded as specified in .

•

•

•

•
[KAnon]

[RFC2045]

2.6. Key and MAC specifications and usage
MessageVortex uses a unique encoding for keys. This encoding is designed to be small and flexible
while maintaining a specific base structure.

The following key structures are available:

SymmetricKey •

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 9

A9

AsymmetricKey

MAC does not require a complete structure containing specs and values, and only a
MacAlgorithmSpec is available. The following sections outline the constraints for specifying
parameters of these structures where a node MUST NOT specify any parameter more than once.

If a crypto mode is specified requiring an IV, then a node MUST provide the IV when specifying
the key.

•

2.6.1. Asymmetric Keys

Nodes use asymmetric keys for identifying peer nodes (i.e., Identities) and encrypting symmetric
keys (for subsequent de-/encryption of the payload or blocks). All asymmetric keys MUST contain
a key type specifying a strictly normed key. Also, they MUST contain a public part of the key
encoded as an X.509 container and a private key specified in PKCS#8 wherever possible.

RSA and EC keys MUST contain a keySize parameter. All asymmetric keys SHOULD have a
padding parameter, and a node SHOULD assume PKCS#1 if no padding is specified.

NTRU specification MUST provide the parameters "n", "p", and "q".

2.6.2. Symmetric Keys

Nodes use symmetric keys for encrypting payloads and control blocks. These symmetric keys
MUST contain a key type specifying a key, which MUST be in an encoded form.

A node MUST provide a keySize parameter if the key (or equivalently, the block) size is not
standardized or encoded in the name. All symmetric key specifications MUST contain a mode
and padding parameter. A node MAY list multiple padding or mode parameters in a
ReplyCapability block to offer the recipient a free choice.

2.7. Transport Address
The term 'transport address' represents the token required to address the next immediate node
on the transport layer. An email transport layer would have SMTP addresses, such as
'vortex@example.com,' as the transport address.

2.8. Identity
2.8.1. Peer Identity

The peer identity may contain the following information of a peerpartner:

A transport address (always) and the public key of thisidentity, given there is no recipient
anonymity.
A routing block, which may be used to contact the sender. If striving for recipient anonymity,
then this block is required.
The private key, which is only known by the owner of the identity.

•

•

•

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 10

A10 APPENDIX A. THE RFC DRAFT DOCUMENT

2.8.2. Ephemeral Identity

Ephemeral identities are temporary identities created on a single node. These identities MUST
NOT relate to another identity on any other node so that they allow bookkeeping for a node. Each
ephemeral identity has a workspace assigned and may also have the following items assigned.

An asymmetric key pair to represent the identity.
A validity time of the identity.

•
•

2.8.3. Official Identity

An official identity may have the following items assigned.

Routing blocks used to reply to the node.
A list of assigned ephemeral identities on all other nodes and their projected quotas.
A list of known nodes with the respective node identity.

•
•
•

2.9. Workspace
Every official or ephemeral identity has a workspace, which consists of the following elements.

Zero or more routing blocks to be processed.
Slots for a payload block sequentially numbered. Every slot:

MUST contain a numerical ID identifying the slot.
MAY contain payload content.
If a block contains a payload, then it MUST contain a validity period.

•
•

◦
◦
◦

2.10. Multi-use Reply Blocks
'Multi-use reply blocks' (MURB) are a special type routing block sent to a receiver of a message or
request. A sender may use such a block one or several times to reply to the sender linked to the
ephemeral identity, and it is possible to achieve sender anonymity using MURBs.

A vortex node MAY deny the use of MURBs by indicating a maxReplay equal to zero when sending
a ReplyCapability block. An unobservable node SHOULD deny the use of MURBs.

2.11. Protocol Version
This document describes version 1 of the protocol. The message PrefixBlock contains an optional
version indicator. If the protocol verion is absent protocol version 1 should be assumed.

3. Layer Overview
The protocol is designed in four layers as shown in Figure 1.

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 11

A11

Every participating node MUST implement the layer's blending, routing, and accounting. There
MUST be at least one incoming and one outgoing transport layer available to a node. All blending
layers SHOULD connect to the respective transport layers for sending and receiving packets.

Figure 1: Layer overview

+--+
| Vortex Node |
| +--+ |
| | Accounting | |
| |__| |
| |
| +--+ |
| | Routing | |
| |__| |
| |
| +---------------------------+ +--------------------------------+ |
| | Blending | | Blending | |
| |___________________________| |________________________________| |
|__|
 +---------------------------+ +--------------+ +---------------+
 | Transport | | Transport in | | Transport out |
 |___________________________| |______________| |_______________|

3.1. Transport Layer
The transport layer transfers the blended Vortex messages to the next vortex node and stores it
until the next blending layer picks up the message.

The transport layer infrastructure SHOULD NOT be specific to anonymous communication and
should contain significant portions of non-Vortex traffic.

3.2. Blending Layer
The blending layer embeds blended Vortex message into the transport layer data stream and
extracts the packets from the transport layer.

3.3. Routing Layer
The routing layer expands the information contained in MessageVortex packets, processes them,
and passes generated packets to the respective blending layer.

3.4. Accounting Layer
The accounting layer tracks all ephemeral identities authorized to use a MessageVortex node and
verifies the available quotas to an ephemeral identity.

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 12

A12 APPENDIX A. THE RFC DRAFT DOCUMENT

4. Vortex Message

4.1. Overview
Figure 2 shows a Vortex message. The enclosed sections denote encrypted blocks, and the three-
or four-letter abbreviations denote the key required for decryption. The abbreviation k_h stands
for the asymmetric host key, and sk_p is the symmetric peer key. The receiving node obtains this
key by decrypting MPREFIX with its host key k_h. Then, sk_s is the symmetric sender key. When
decrypting the MPREFIX block, the node obtains this key. The sender key protects the header and
routing blocks by guaranteeing that the node assembling the message does not know about
upcoming identities, operations, and requests. The peer key protects the message, including its
structure, from third-party observers.

4.2. Message Prefix Block (MPREFIX)
The PrefixBlock contains a symmetrical key as defined in Appendix A.1 and is encrypted using
the host key of the receiving peer host. The symmetric key utilized MUST be from the set
advertised by a CapabilitiesReplyBlock (see Section 7.2.6). A node MAY choose any parameters
omitted in the CapabilitiesReplyBlock freely unless stated otherwise in Section 7.2.6. A node
SHOULD avoid sending unencrypted PrefixBlocks. A host MAY reply to a message with an
unencrypted message block, but any reply to a message SHOULD be encrypted.

The sender MUST choose a key that may be encrypted with the host key in the respective
PrefixBlock using the padding advertised by the CapabilitiesReplyBlock.

4.3. Inner Message Block
A node MUST always encrypt an InnerMessageBlock with the symmetric key of the PrefixBlock
to hide the inner structure of the message. The InnerMessageBlock SHOULD always
accommodate four or more payload chunks.

Figure 2: Vortex message overview

+-+---+-+-+---+-+---+-+-+---+-+-+-+-------+-+
					C						R			
					P			H			O			
	M				R			E			U		P	
	P				E			A			T		A	
	R				F			D			I		Y	
	E				I			E			N		L	
	F				X			R			G		O	
	I			+---+		___			___		A			
	X			k_h	sk_s	sk_s	D							
	___			_______	_______	_______	_______							
k_h	sk_p													
_______	___________________________________													

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 13

A13

4.3.1. Control Prefix Block

Control prefix (CPREFIX) and MPREFIX blocks share the same structure and logic as well as
containing the sender key sk_s. If an MPREFIX block is unencrypted, a node MAY omit the
CPREFIX block. An omitted CPREFIX block results in unencrypted control blocks (e.g., the
HeaderBlock and RoutingBlock).

4.3.2. Control Blocks

The control blocks of the HeaderBlock and a RoutingBlock contain the core information to
process the payload.

4.3.2.1. Header Block
The header block (see HeaderBlock in Appendix A) contains the following information.

It MUST contain the local ephemeral identity of the routing block builder.
It MAY contain header requests.
It MAY contain the solution to a PuzzleRequired block previously opposed in a header
request.

The list of header requests MAY be one of the following.

Empty.
Contain a single identity create request (HeaderRequestIdentity).
Contain a single increase quota request.

If a header block violates these rules, then a node MUST NOT reply to any header request. The
payload and routing blocks SHOULD still be added to the workspace and processed if the message
quota is not exceeded.

4.3.2.2. Routing Block
The routing block (see RoutingBlock in Appendix A) contains the following information.

It MUST contain a serial number uniquely identifying the routing block of this user. The serial
number MUST be unique during the lifetime of the routing block.
It MUST contain the same forward secret as the two prefix blocks and the header block.
It MAY contain assembly and processing instructions for subsequent messages.
It MAY contain a reply block for messages assigned to the owner of the identity.

4.3.3. Payload Block

Each InnerMessageBlock with routing information SHOULD contain at least four
PayloadChunks.

•
•
•

•
•
•

•

•
•
•

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 14

A14 APPENDIX A. THE RFC DRAFT DOCUMENT

5. General notes
The MessageVortex protocol is a modular protocol that allows the use of different encryption
algorithms. For its operation, a Vortex node SHOULD always support at least two distinct types of
algorithms, paddings, or modes such that they rely on two mathematical problems.

5.1. Supported Symmetric Ciphers
A node MUST support the following symmetric ciphers.

AES128 (see for AES implementation details).
AES256.
CAMELLIA128 (see Chapter 3 for Camellia implementation details).
CAMELLIA256.

A node SHOULD support any standardized key larger than the smallest key size.

A node MAY support Twofish ciphers (see).

5.2. Supported Asymmetric Ciphers
A node MUST support the following asymmetric ciphers.

RSA with key sizes larger or equal to 2048 ().
ECC with named curves secp384r1, sect409k1 or secp521r1 (see).

5.3. Supported MACs
A node MUST support the following Message Authentication Codes (MAC).

SHA3-256 (see for SHA implementation details).
RipeMD160 (see for RIPEMD implementation details).

A node SHOULD support the following MACs.

SHA3-512.
RipeMD256.
RipeMD512.

5.4. Supported Paddings
A node MUST support the following paddings specified in .

PKCS1 (see).
PKCS7 (see).

• [FIPS-AES]
•
• [RFC3657]
•

[TWOFISH]

• [RFC8017]
• [SEC1]

• [ISO-10118-3]
• [ISO-10118-3]

•
•
•

[RFC8017]

• [RFC8017]
• [RFC5958]

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 15

A15

5.5. Supported Modes
A node MUST support the following modes.

CBC (see) such that the utilized IV must be of equal length as the key.
EAX (see).
GCM (see).
NONE (only used in special cases, see Section 10).

A node SHOULD NOT use the following modes.

NONE (except as stated when using the addRedundancy function).
ECB.

A node SHOULD support the following modes.

CTR ().
CCM ().
OCB ().
OFB ().

• [RFC1423]
• [EAX]
• [RFC5288]
•

•
•

• [RFC3686]
• [RFC3610]
• [RFC7253]
• [MODES]

6. Blending
Each node supports a fixed set of blending capabilities, which may be different for incoming and
outgoing messages.

The following sections describe the blending mechanism. There are currently two blending layers
specified with one for the Simple Mail Transfer Protocol (SMTP, see) and the second for
the Extensible Messaging and Presence Protocol (XMPP, see). All nodes MUST at least
support "encoding=plain:0,256".

[RFC5321]
[RFC6120]

6.1. Blending in Attachments
There are two types of blending supported when using attachments.

Plain binary encoding with offset (PLAIN).
Embedding with F5 in an image (F5).

A node MUST support PLAIN blending for reasons of interoperability, whereas a node MAY
support blending using F5.

A routing block builder (RBB) MUST take care of sizing restrictions of the transport layer when
composing routing blocks

•
•

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 16

A16 APPENDIX A. THE RFC DRAFT DOCUMENT

6.1.1. PLAIN embedding into attachments

A blending layer embeds a VortexMessage in a carrier file with an offset for PLAIN blending. For
replacing a file start, a node MUST use the offset 0. The routing node MUST choose the payload file
for the message and SHOULD use a credible payload type (e.g., MIMEtype) with high entropy.
Furthermore, it SHOULD prefix a valid header structure to avoid easy detection of the Vortex
message. Finally, a routing node SHOULD use a valid footer, if any, to a payload file to improve
blending.

The blended Vortex message is embedded in one or more message chunks, each starting with a
chunk header. The chunk header consists of two unsigned integers of variable length. The integer
starts with the LSB, and if bit 7 is set, then another byte follows. There cannot be more than four
bytes whereas the last, fourth byte is always 8 bit. The three preceding bytes have a payload of
seven bits each, which results in a maximum number of 2^29 bits. The first of the extracted
numbers (modulo remaining document bytes starting from the first and including byte of the
chunk header) reflect the number of bytes in the chunk after the chunk header. The second
contains the number of bytes (again modulo remaining document bytes) to be skipped after the
current chunk to reach the next chunk. There is no "last chunk" indicator. A gap or chunk may
surpass the end of the file.

A node SHOULD offer at least one PLAIN blending method and MAY offer multiple offsets for
incoming Vortex messages.

A plain blending is specified as follows.

pos: 00h 02h 04h 06h 08h...400h 402h 404h 406h 408h 40Ah
val: 01 02 03 04 05 06 07 08 09 ...01 05 0A 0B 0C 0D 0E 0F f0 03 12 13

Embedding: "(plain:1024)"

Result: 0A 13 (+ 494 omitted bytes; then skip 12 bytes to next chunk)

plainEncoding = "("plain:" <numberOfBytesOfOffset>
 ["," <numberOfBytesOfOffset>]* ")"

6.1.2. F5 embedding into attachments

For F5, a blending layer embeds a Vortex message into a jpeg file according to . The password
for blending may be public, and a routing node MAY advertise multiple passwords. The use of F5
adds approximately tenfold transfer volume to the message. A routing block building node
SHOULD only use F5 blending where appropriate.

A blending in F5 is specified as the following.

[F5]

f5Encoding = "(F5:" <passwordString> ["," <PasswordString>]* ")"

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 17

A17

Commas and backslashes in passwords MUST be escaped with a backslash whereas closing
brackets are treated as normal password characters unless they are the final character of the
encoding specification string.

6.2. Blending into an SMTP layer
Email messages with content MUST be encoded with Multipurpose Internet Mail Extensions
(MIME) as specified in . All nodes MUST support BASE64 encoding and MUST test all
sections of a MIME message for the presence of a VortexMessage.

A Vortex message is present if a block containing the peer key at the known offset of any MIME
part decodes correctly.

A node SHOULD support SMTP-blending for sending and receiving. For sending SMTP, the
specification in must be used. TLS layers MUST always be applied when obtaining
messages using POP3 (as specified in and) or IMAP (as specified in

). Any SMTP connection MUST employ a TLS encryption when passing credentials.

[RFC2045]

[RFC5321]
[RFC1939] [RFC2595]

[RFC3501]

6.3. Blending into an XMPP layer
For interoperability, an implementation SHOULD provide XMPP-blending.

Blending into XMPP traffic is performed using the extension of the XMPP protocol.

PLAIN- and F5-blending are acceptable for this transport layer.

[XEP-0231]

7. Routing

7.1. Vortex Message Processing
7.1.1. Processing of incoming Vortex Messages

An incoming message is considered initially unauthenticated. A node should consider a
VortexMessage as authenticated as soon as the ephemeral identity is known and is not
temporary.

For an unauthenticated message, the following rules apply.

A node MUST ignore all routing blocks.
A node MUST ignore all payload blocks.
A node SHOULD accept identity creation requests in unauthenticated messages.
A node MUST ignore all other header requests except identity creation requests.
A node MUST ignore all identity creation requests belonging to an existing identity.

•
•
•
•
•

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 18

A18 APPENDIX A. THE RFC DRAFT DOCUMENT

A message is considered authenticated as soon as the identity used in the header block is known
and not temporary. A node MUST NOT treat a message as authenticated if the specified maximum
number of replays is reached. For authenticated messages, the following rules apply.

A node MUST ignore identity creation requests.
A node MUST replace the current reply block with the reply block provided in the routing
block (if any). The node MUST keep the reply block if none is provided.
A node SHOULD process all header requests.
A node SHOULD add all routing blocks to the workspace.
A node SHOULD add all payload blocks to the workspace.

A routing node MUST decrement the message quota by one if a received message is
authenticated, valid, and contains at least one payload block. If a message is identified as a
duplicate according to reply protection, then a node MUST NOT decrement the message quota.

•
•

•
•
•

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 19

A19

The message processing works according to the pseudo-code shown below.

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 20

A20 APPENDIX A. THE RFC DRAFT DOCUMENT

function incomming_message(VortexMessage blendedMessage) {
 try{
 msg = unblend(blendedMessage);
 if(not msg) {
 // Abort processing
 throw exception("no embedded message found")
 } else {
 hdr = get_header(msg)
 if(not known_identity(hdr.identity) {
 if(get_requests(hdr) contains HeaderRequestIdentity) {
 create_new_identity(hdr).set_temporary(true)
 send_message(create_requirement(hdr))
 } else {
 // Abort processing
 throw exception("identity unknown")
 }
 } else {
 if(is_duplicate_or_replayed(msg)) {
 // Abort processing
 throw exception "duplicate or replayed message")
 } else {
 if(get_accounting(hdr.identity).is_temporary()) {
 if(not verify_requirement(hdr.identity, msg)) {
 get_accounting(hdr.identity).set_temporary(false)
 }
 }
 if(get_accounting(hdr).is_temporary()) {
 throw exception("no processing on temporary identity")
 }

 // Message authenticated
 get_accounting(hdr.identity)
 .register_for_replay_protection(msg)
 if(not verify_mtching_forward_secrets(msg)) {
 throw exception("forward secret missmatch")
 }
 if(contains_payload(msg)) {
 if(get_accounting(hdr.identity
 .decrement_message_quota()) {
 while index,nextPayloadBlock
 == get_next_payload_block(msg) {
 add_workspace(header.identity,
 index, nextPayloadBlock)
 }
 while nextRoutingBlock = get_next_routing_block(msg) {
 add_workspace(hdr.identity,
 add_routing(nextRoutingBlock))
 }
 process_reserved_mapping_space(msg)
 while nextRequirement = get_next_requirement(hdr) {
 add_workspace(hdr.identity, nextRequirement)
 }
 } else {
 throw exception("Message quota exceeded")
 }
 }
 }

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 21

A21

 }
 } catch(exception e) {
 // Message processing failed
 throw e;
 }
}

7.1.2. Processing of Routing Blocks in the Workspace

A routing workspace consists of the following items.

The linked identity, which determines the lifetime of the workspace.
The linked routing combos (RoutingCombo).
A payload chunk space with the following multiple subspaces available:

ID 0 represents a message to be embedded (when reading) or a message to be extracted to
the user (when written).
ID 1 to ID maxPayloadBlocks represent the payload chunk slots in the target message.
All blocks between ID maxPayloadBlocks + 1 to ID 32766 belong to a temporary routing
block-specific space.
ID 32767 MUST be used to signal a solicited reply block.
All blocks between ID 32768 to ID 65535 belong to a shared space available to all operations
of the identity.

The accounting layer typically triggers processing and represents either a cleanup action or a
routing event. A cleanup event deletes the following information from all workspaces.

All processed routing combos.
All routing combos with expired usagePeriod.
All payload chunks exceeding the maxProcess time.
All expired objects.
All expired puzzles.
All expired identities.
All expired replay protections.

Note that maxProcessTime reflects the number of seconds since the arrival of the last octet of the
message at the transport layer facility. A node SHOULD NOT take additional processing time (e.g.,
for anti-UBE or anti-virus) into account.

The accounting layer triggers routing events occurring at least the minProcessTime after the last
octet of the message arrived at the routing layer. A node SHOULD choose the latest possible
moment at which the peer node receives the last octet of the assembled message before the
maxProcessTime is reached. The calculation of this last point in time where a message may be set
SHOULD always assume that the target node is working. A sending node SHOULD choose the time
within these bounds randomly. An accounting layer MAY trigger multiple routing combos in bulk
to further obfuscate the identity of a single transport message.

•
•
•

◦

◦
◦

◦
◦

•
•
•
•
•
•
•

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 22

A22 APPENDIX A. THE RFC DRAFT DOCUMENT

First, the processing node escapes the payload chunk at ID 0 if needed (e.g., a non-special block is
starting with a backslash). Next, it executes all processing instructions of the routing combo in the
specified sequence. If an instruction fails, then the block at the target ID of the operation remains
unchanged. The routing layer proceeds with the subsequent processing instructions by ignoring
the error. For a detailed description of the operations, see Section 7.4. If a node succeeds in
building at least one payload chunk, then a VortexMessage is composed and passed to the
blending layer.

7.1.3. Processing of Outgoing Vortex Messages

The blending layer MUST compose a transport layer message according to the specification
provided in the routing combo. It SHOULD choose any decoy message or steganographic carrier
in such a way that the Dead Parrot syndrome, as specified in , is avoided.[DeadParrot]

7.2. Header Requests
Header requests are control requests for the anonymization system. Messages with requests or
replies only MUST NOT affect any quota.

7.2.1. Request New Ephemeral Identity

Requesting a new ephemeral identity is performed by sending a message containing a header
block with the new identity and an identity creation request (HeaderRequestIdentity) to a node.
The node MAY send an error block (see Section 7.3.1) if it rejects the request.

If a node accepts an identity creation request, then it MUST send a reply. A node accepting a
request without a requirement MUST send back a special block containing "no error". A node
accepting a request under the precondition of a requirement to be fulfilled MUST send a special
block containing a requirement block.

A node SHOULD NOT reply to any cleartext requests if the node does not want to officially
disclose its identity as a Vortex node. A node MUST reply with an error block if a valid identity is
used for the request.

7.2.2. Request Message Quota

Any valid ephemeral identity may request an increase of the current message quota to a specific
value at any time. The request MUST include a reply block in the header and may contain other
parts. If a requested value is lower than the current quota, then the node SHOULD NOT refuse the
quota request and SHOULD send a "no error" status.

A node SHOULD reply to a HeaderRequestIncreaseMessageQuota request (see Appendix A) of a
valid ephemera identity. The reply MUST include a requirement, an error message or a "no error"
status message.

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 23

A23

7.2.3. Request Increase of Message Quota

A node may request to increase the current message quota by sending a
HeaderRequestIncreaseMessageQuota request to the routing node. The value specified within the
node is the new quota. HeaderRequestIncreaseMessageQuota requests MUST include a reply
block, and a node SHOULD NOT use a previously sent MURB to reply.

If the requested quota is higher than the current quota, then the node SHOULD send a "no error"
reply. If the requested quota is not accepted, then the node SHOULD send a
requestedQuotaOutOfBand reply.

A node accepting the request MUST send a RequirementBlock or a "no error block."

7.2.4. Request Transfer Quota

Any valid ephemeral identity may request to increase the current transfer quota to a specific
value at any time. The request MUST include a reply block in the header and may contain other
parts. If a requested value is lower than the current quota, then the node SHOULD NOT refuse the
quota request and SHOULD send a "no error" status.

A node SHOULD reply to a eaderRequestIncreaseTransferQuota request (see Appendix A) of a
valid ephemeral identity. The reply MUST include a requirement, an error message or a "no error"
status message.

7.2.5. Query Quota

Any valid ephemeral identity may request the current message and transfer quota. The request
MUST include a reply block in the header and may contain other parts.

A node MUST reply to a HeaderRequestQueryQuota request (see Appendix A), which MUST
include the current message quota and the current message transfer quota. The reply to this
request MUST NOT include a requirement.

7.2.6. Request Capabilities

Any node MAY request the capabilities of another node, which include all information necessary
to create a parsable VortexMessage. Any node SHOULD reply to any encrypted
HeaderRequestCapability.

A node SHOULD NOT reply to cleartext requests if the node does not want to officially disclose its
identity as a Vortex node. A node MUST reply if a valid identity is used for the request, and it MAY
reply to unknown identities.

7.2.7. Request Nodes

A node may ask another node for a list of routing node addresses and keys, which may be used to
bootstrap a new node and add routing nodes to increase the anonymization of a node. The
receiving node of such a request SHOULD reply with a requirement
(e.g.,RequirementPuzzleRequired).

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 24

A24 APPENDIX A. THE RFC DRAFT DOCUMENT

A node MAY reply to a HeaderRequest request (see Appendix A) of a valid ephemeral identity, and
the reply MUST include a requirement, an error message, or a "no error" status message. A node
MUST NOT reply to an unknown identity and SHOULD always reply with the same result set to
the same identity.

7.2.8. Request Identity Replace

This request type allows a receiving node to replace an existing identity with the identity
provided in the message and is required if an adversary manages to deny the usage of a node (e.g.,
by deleting the corresponding transport account). Any sending node may recover from such an
attack by sending a valid authenticated message to another identity to provide the new transport
and key details.

A node SHOULD reply to such a request from a valid known identity, and the reply MUST include
an error message or a "no error" status message.

7.2.9. Request Upgrade

This request type allows a node to request a new version of the software in an anonymous,
unlinked manor. The identifier MUST identify the software product uniquely. The version MUST
reflect the version tag of the currently installed version or a similarly usable tag.

7.3. Special Blocks
Special blocks are payload messages that reflect messages from one node to another and are not
visible to the user. A special block starts with the character sequence '\special' (or 5Ch 73h 70h 65h
63h 69h 61h 6Ch) followed by a DER-encoded special block (SpecialBlock). Any non-special
message decoding to ID 0 in a workspace starting with this character sequence MUST escape all
backslashes within the payload chunk with an additional backslash.

7.3.1. Error Block

An error block may be sent as a reply contained in the payload section. The error block is
embedded in a special block and sent with any provided reply block. Error messages SHOULD
contain the serial number of the offending header block and MAY contain human-readable text
providing additional messages about the error.

7.3.2. Requirement Block

If a node receives a requirement block, then it MUST assume that the request block is accepted, is
not yet processed, and is to be processed if it meets the contained requirement. A node MUST
process a request as soon as the requirement is fulfilled and MUST resend the request as soon as it
meets the requirement.

A node MAY reject a request, accept a request without a requirement, accept a request upon
payment (RequirementPaymentRequired), or accept a request upon solving a proof of work
puzzle (RequirementPuzzleRequired).

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 25

A25

7.3.2.1. Puzzle Requirement
If a node requests a puzzle, then it MUST send a RequirementPuzzleRequired block. The puzzle
requirement is solved if the node receiving the puzzle replies with a header block that contains
the puzzle block, and the hash of the encoded block begins with the bit sequence mentioned in the
puzzle within the period specified in the field 'valid.'

A node solving a puzzle requires sending a VortexMessage to the requesting node, which MUST
contain a header block that includes the puzzle block and MUST have a MAC fingerprint starting
with the bit sequence as specified in the challenge. The receiving node calculates the MAC from
the unencrypted DER-encoded HeaderBlock with the algorithm specified by the node. The sending
node may achieve the requirement by adding a proofOfWork field to the HeaderBlock containing
any content fulfilling the criteria. The sending node SHOULD keep the proofOfWork field as short
as possible.

7.3.2.2. Payment Requirement
If a node requests a payment, then it MUST send a RequirementPaymentRequired block. As soon
as the requested fee is paid and confirmed, the requesting node MUST send a "no error" status
message. The usage period 'valid' describes the period during which the payment may be carried
out. A node MUST accept the payment if it occurs within the 'valid' period but is confirmed later. A
node SHOULD return all unsolicited payments to the sending address.

7.3.2.3. Upgrade
If a node requests an upgrade, a ReplyUpgrade block MAY be sent. The block must contain the
identifier and version of the most recent software version. The blob MAY contain the software if
there is a newer one available.

7.4. Routing Operations
Routing operations are contained in a routing block and processed upon arrival of a message or
when compiling a new message. All operations are reversible, and no operation is available for
generating decoy traffic, which may be used through encryption of an unpadded block or the
addRedundancy operation.

All payload chunk blocks inherit the validity time from the message routing combos as arrival
time + max(maxProcessTime).

When applying an operation to a source block, the resulting target block inherits the expiration
of the source block. When multiple expiration times exist, the one furthest in the future is applied
to the target block. If the operation fails, then the target expiration remains unchanged.

7.4.1. Mapping Operation

The straightforward mapping operation is used in inOperations of a routing block to map the
routing block's specific blocks to a permanent workspace.

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 26

A26 APPENDIX A. THE RFC DRAFT DOCUMENT

7.4.2. Split and Merge Operations

The split and merge operations allow splitting and recombining message chunks. A node MUST
adhere to the following constraints.

The operation must be applied at an absolute (measuring in bytes) or relative (measured as a
float value in the range 0>value>100) position.
All calculations must be performed according to and in 64-bit precision.
If a relative value is a non-integer result, then a floor operation (i.e., cutting off all non-integer
parts) determines the number of bytes.
If an absolute value is negative, then the size represents the number of bytes counted from
the end of the message chunk.
If an absolute value is greater than the number of bytes in a block, then all bytes are mapped
to the respective target block, and the other target block becomes a zero byte-sized block.

An operation MUST fail if relative values are equal to, or less than zero. An operation MUST fail if
a relative value is equal to, or greater than 100. All floating-point operations must be performed
according to and in 64-bit precision.

•

• IEEE 754 [IEEE754]
•

•

•

[IEEE754]

7.4.3. Encrypt and Decrypt Operations

Encryption and decryption are executed according to the standards mentioned above. An
encryption operation encrypts a block symmetrically and places the result in the target block.
The parameters MUST contain IV, padding, and cipher modes. An encryption operation without a
valid parameter set MUST fail.

7.4.4. Add and Remove Redundancy Operations

The addRedundancy and removeRedundancy operations are core to the protocol. They may be
used to split messages and distribute message content across multiple routing nodes. The
operation is separated into three steps.

Pad the input block to a multiple of the key block size in the resulting output blocks.
Apply a Vandermonde matrix with the given sizes.
Encrypt each resulting block with a separate key.

The following sections describe the order of the operations within an addRedundancy operation.
For a removeRedundancy operation, invert the functions and order. If the removeRedundancy
has more than the required blocks to recover the information, then it should take only the
required number beginning from the smallest. If a seed and PRNG are provided, then the
removeRedundancy operation MAY test any combination until recovery is successful.

1.
2.
3.

7.4.4.1. Padding Operation
Padding is done in multiple steps. First, we calculate the padding value p. We then concatenate
the padding value p as 32-bit little-endian unit with the message and fill the remaining bytes
required with the seeded PRNG.

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 27

A27

A processing node calculates the final length of all payload blocks, including redundancy. This is
done in three steps, followed by the calculation of the padding value p.

i=len(<input block>) [calculate the size of the input block]
e=lcm(<Blocksize of output encyrption in # bytes>,<# of output blocks>) [Calculate Minimum
size of the output block]
l=roof((i+4+C2)/e)*e [Calculate the final length of the padded stream suitable for the
subsequent operations. C2 is a constant which is either provided by the RBB or 0 if not
specified.]
p=i+(C1*l(mod (roof((2^32-1-i)/l)*))) [Calculate padding value p. C1 is a positive integer
constant and MUST be provided by the RBB to maintain diagnosability.]

The remainder of the input block, up to length L, is padded with random data. A routing block
builder should specify the value of the randomInteger. If not specified, the routing node may
choose a random positive integer value. A routing block builder SHOULD specify a PRNG and a
seed used for this padding. If GF(16) is applied, then all numbers are treated as little-endian
representations. Only GF(8) and GF(16) are allowed fields.

The length of 0 is a valid length

This padding guarantees that each resulting block matches the block size of the subsequent
encryption operation and does not require further padding.

For padding removal, the padding p at the start is first removed as a little-endian integer. Second,
the length of the output block is calculated by applying <output block size in bytes>=p (mod
<input block size in bytes>-4)

1.
2.

3.

4.

7.4.4.2. Apply Matrix
Next, the input block is organized in a data matrix D of dimensions (inrows, incols) where
incols=(<number of data blocks>-<number of redundancy blocks>) and inrows=L/(<number of
data blocks>-<number of redundancy blocks>). The input block data is first distributed in this
matrix across, and then down.

Next, the data matrix D is multiplied by a Vandermonde matrix V with its number of rows equal
to the incols calculated and columns equal to the <number of data blocks>. The content of the
matrix is formed by v(i,j)=pow(i,j), where i reflects the row number starting at 0, and j reflects the
column number starting at 0. The calculations described must be carried out in the GF noted in
the respective operation to be successful. The completed operation results in matrix A.

7.4.4.3. Encrypt Target Block
Each row vector of A is a new data block encrypted with the corresponding encryption key noted
in the keys of the addRedundancyOperation. If there are not enough keys available, then the keys
used for encryption are reused from the beginning after the final key is used. A routing block
builder SHOULD provide enough keys so that all target blocks may be encrypted with a unique
key. All encryptions SHOULD NOT use padding.

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 28

A28 APPENDIX A. THE RFC DRAFT DOCUMENT

7.5. Processing of Vortex Messages
The accounting layer triggers processing according to the information contained in a routing
block in the workspace. All operations MUST be executed in the sequence provided in the routing
block, and any failing operation must leave the result block unmodified.

All workspace blocks resulting in IDs of 1 to maxPayloadBlock are then added to the message and
passed to the blending layer with appropriate instructions.

8. Accounting

8.1. Accounting Operations
The accounting layer has two types of operations.

Time-based (e.g., cleanup jobs and initiation of routing).
Routing triggered (e.g., updating quotas, authorizing operations, and pickup of incoming
messages).

Implementations MUST provide sufficient locking mechanisms to guarantee the integrity of
accounting information and the workspace at any time.

•
•

8.1.1. Time-Based Garbage Collection

The accounting layer SHOULD keep a list of expiration times. As soon as an entry (e.g., payload
block or identity) expires, the respective structure should be removed from the workspace. An
implementation MAY choose to remove expired items periodically or when encountering them
during normal operation.

8.1.2. Time-Based Routing Initiation

The accounting layer MAY keep a list of when a routing block is activated. For improved privacy,
the accounting layer should use a slotted model where, whenever possible, multiple routing blocks
are handled in the same period, and the requests to the blending layers are mixed between the
transactions.

8.1.3. Routing Based Quota Updates

A node MUST update quotas on the respective operations. For example, a node MUST decrease
the message quota before processing routing blocks in the workspace and after the processing of
header requests.

8.1.4. Routing Based Authorization

The transfer quota MUST be checked and decreased by the number of data bytes in the payload
chunks after an outgoing message is processed and fully assembled. The message quota MUST be
decreased by one on each routing block triggering the assembly of an outgoing message.

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 29

A29

8.1.5. Ephemeral Identity Creation

Any packet may request the creation of an ephemeral identity. A node SHOULD NOT accept such
a request without a costly requirement since the request includes a lifetime of the ephemeral
identity. The costs for creating the ephemeral identity SHOULD increase if a longer lifetime is
requested.

9. IANA Considerations
This memo includes no request to IANA.

Additional encryption algorithms, paddings, modes, blending layers or puzzles MUST be added by
writing an extension to this or a subsequent RFC. For testing purposes, IDs above 1,000,000 should
be used.

10. Security Considerations
The MessageVortex protocol should be understood as a toolset instead of a fixed product.
Depending on the usage of the toolset, anonymity and security are affected. For a detailed
analysis, see .

The primary goals for security within this protocol rely on the following focus areas.

Confidentiality
Integrity
Availability
Anonymity

Third-party anonymity
Sender anonymity
Receiver anonymity

These aspects are affected by the usage of the protocol, and the following sections provide
additional information on how they impact the primary goals.

The Vortex protocol does not rely on any encryption of the transport layer since Vortex messages
are already encrypted. In addition, confidentiality is not affected by the protection mechanisms
of the transport layer.

If a transport layer supports encryption, then a Vortex node SHOULD use it to improve the
privacy of the message.

Anonymity is affected by the inner workings of the blending layer in many ways. A Vortex
message cannot be read by anyone except the peer nodes and routing block builder. The presence
of a Vortex node message may be detected through the typical high entropy of an encrypted file,

[MVAnalysis]

•
•
•
•

◦
◦
◦

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 30

A30 APPENDIX A. THE RFC DRAFT DOCUMENT

broken structures of a carrier file, meaningless content of a carrier file, or the contextless
communication of the transport layer with its peer partner. A blending layer SHOULD minimize
the possibility of simple detection by minimizing these effects.

A blending layer SHOULD use carrier files with high compression or encryption. Carrier files
SHOULD NOT have inner structures such that the payload is comparable to valid content. To
achieve undetectability by a human reviewer, a routing block builder should use F5 instead of
PLAIN blending. This approach however, increases the protocol overhead by approximately
tenfold.

The two layers of 'routing' and 'accounting' have the deepest insight into a Vortex message's inner
workings. Each is aware of the immediate peer sender and the peer recipients of all payload
chunks. As decoy traffic is generated by combining chunks and applying redundancy
calculations, a node can never know if a malfunction (e.g., during a recovery calculation) was
intended. Therefore, a node is unable to distinguish a failed transaction from a terminated
transaction as well as content from decoy traffic.

A routing block builder SHOULD follow the following rules not to compromise a Vortex message's
anonymity.

All operations applied SHOULD be credibly involved in a message transfer.
A sufficient subset of the result of an addRedundancy operation should always be sent to
peers to allow recovery of the data built.
The anonymity set of a message should be sufficiently large to avoid legal prosecution of all
jurisdictional entities involved, even if a certain amount of the anonymity set cooperates
with an adversary.
Encryption and decryption SHOULD follow normal usage whenever possible by avoiding the
encryption of a block on a node with one key and decrypting it with a different key on the
same or adjacent node.
Traffic peaks SHOULD be uniformly distributed within the entire anonymity set.
A routing block SHOULD be used for a limited number of messages. If used as a message block
for the node, then it should be used only once. A block builder SHOULD use the
HeaderRequestReplaceIdentity block to update the reply to routing blocks regularly.
Implementers should always remember that the same routing block is identifiable by its
structure.

An active adversary cannot use blocks from other routing block builders. While the adversary
may falsify the result by injecting an incorrect message chunk or not sending a message, such
message disruptions may be detected by intentionally routing information to the routing block
builder (RBB) node. If the Vortex message does not carry the information expected, then the node
may safely assume that one of the involved nodes is misbehaving. A block building node MAY
calculate the reputation for involved nodes over time and MAY build redundancy paths into a
routing block to withstand such malicious nodes.

•
•

•

•

•
•

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 31

A31

[CCITT.X208.1988]

[CCITT.X680.2002]

[EAX]

[F5]

[FIPS-AES]

[IEEE754]

[ISO-10118-3]

[MODES]

[RFC1423]

[RFC2119]

[RFC3610]

[RFC3657]

11. References

11.1. Normative References

,
,

, November 1998.

,
, November 2002.

, , 2011.

,
, 24 October 2001.

,
, November 2011.

, , 29 August 2008.

,

, March 2004.

,
, December 2001.

,
, , , February

1993, .

, , ,
, , March 1997,
.

, ,
, , September 2003,

.

,
, , , January

2004, .

Receiver anonymity is at risk if the handling of the message header and content is not done with
care. An attacker might send a bugged message (e.g., with a DKIM header) to de-anonymize a
recipient. Careful attention is required when handling anything other than local references when
processing, verifying or rendering a message.

International Telephone and Telegraph Consultative Committee
"Specification of Abstract Syntax Notation One (ASN.1)" CCITT
Recommendation X.208

International Telephone and Telegraph Consultative Committee "Abstract
Syntax Notation One (ASN.1): Specification of Basic Notation"

Bellare, M., Rogaway, P., and D. Wagner "The EAX Mode of Operation"

Westfeld, A. "F5 - A Steganographic Algorithm - High Capacity Despite Better
Steganalysis"

Federal Information Processing Standard (FIPS) "Specification for the
ADVANCED ENCRYPTION STANDARD (AES)"

IEEE "754-2008 - IEEE Standard for Floating-Point Arithmetic"

International Organization for Standardization "ISO/IEC 10118-3:2004 --
Information Technology -- Security Techniques -- Hash-Functions -- Part 3:
Dedicated Hash-Functions"

National Institute for Standards and Technology (NIST) "Recommendation for
Block Cipher Modes of Operation: Methods and Techniques"

Balenson, D. "Privacy Enhancement for Internet Electronic Mail: Part III:
Algorithms, Modes, and Identifiers" RFC 1423 DOI 10.17487/RFC1423

<https://www.rfc-editor.org/info/rfc1423>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Whiting, D., Housley, R., and N. Ferguson "Counter with CBC-MAC (CCM)" RFC
3610 DOI 10.17487/RFC3610 <https://www.rfc-editor.org/info/
rfc3610>

Moriai, S. and A. Kato "Use of the Camellia Encryption Algorithm in
Cryptographic Message Syntax (CMS)" RFC 3657 DOI 10.17487/RFC3657

<https://www.rfc-editor.org/info/rfc3657>

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 32

A32 APPENDIX A. THE RFC DRAFT DOCUMENT

[RFC3686]

[RFC5234]

[RFC5288]

[RFC5958]

[RFC7253]

[RFC8017]

[SEC1]

[TWOFISH]

[XEP-0231]

[DeadParrot]

[KAnon]

[MVAnalysis]

[RFC1939]

[RFC2045]

[RFC2595]

,
, , ,

January 2004, .

, ,
, , , January 2008,

.

,
, , , August 2008,

.

, , , , August
2010, .

, ,
, , May 2014, .

,
, , , November 2016,

.

, , 21 May 2009.

,
, March 1999.

, , 3 September 2008,
.

11.2. Informative References

,
, 2013,

.

, , 2003.

, , 2018,
.

, , , ,
, May 1996, .

,
, , ,

November 1996, .

, , ,
, June 1999, .

Housley, R. "Using Advanced Encryption Standard (AES) Counter Mode With
IPsec Encapsulating Security Payload (ESP)" RFC 3686 DOI 10.17487/RFC3686

<https://www.rfc-editor.org/info/rfc3686>

Crocker, D., Ed. and P. Overell "Augmented BNF for Syntax Specifications: ABNF"
STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://www.rfc-
editor.org/info/rfc5234>

Salowey, J., Choudhury, A., and D. McGrew "AES Galois Counter Mode (GCM)
Cipher Suites for TLS" RFC 5288 DOI 10.17487/RFC5288 <https://
www.rfc-editor.org/info/rfc5288>

Turner, S. "Asymmetric Key Packages" RFC 5958 DOI 10.17487/RFC5958
<https://www.rfc-editor.org/info/rfc5958>

Krovetz, T. and P. Rogaway "The OCB Authenticated-Encryption Algorithm" RFC
7253 DOI 10.17487/RFC7253 <https://www.rfc-editor.org/info/rfc7253>

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch "PKCS #1: RSA Cryptography
Specifications Version 2.2" RFC 8017 DOI 10.17487/RFC8017
<https://www.rfc-editor.org/info/rfc8017>

Certicom Research "SEC 1: Elliptic Curve Cryptography"

Schneier, B. "The Twofish Encryptions Algorithm: A 128-Bit Block Cipher, 1st
Edition"

Peter, S.A. and P. Simerda "XEP-0231: Bits of Binary" <https://
xmpp.org/extensions/xep-0231.html>

Houmansadr, A., Burbaker, C., and V. Shmatikov "The Parrot is Dead: Observing
Unobservable Network Communications" <https://people.cs.umass.edu/
~amir/papers/parrot.pdf>

Ahn, L., Bortz, A., and N.J. Hopper "k-Anonymous Message Transmission"

Gwerder, M. "MessageVortex" <https://messagevortex.net/devel/
messageVortex.pdf>

Myers, J. and M. Rose "Post Office Protocol - Version 3" STD 53 RFC 1939 DOI
10.17487/RFC1939 <https://www.rfc-editor.org/info/rfc1939>

Freed, N. and N. Borenstein "Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies" RFC 2045 DOI 10.17487/RFC2045

<https://www.rfc-editor.org/info/rfc2045>

Newman, C. "Using TLS with IMAP, POP3 and ACAP" RFC 2595 DOI 10.17487/
RFC2595 <https://www.rfc-editor.org/info/rfc2595>

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 33

A33

[RFC3501]

[RFC5321]

[RFC6120]

, , ,
, March 2003, .

, , , ,
October 2008, .

, ,
, , March 2011,

.

Crispin, M. "INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1" RFC 3501
DOI 10.17487/RFC3501 <https://www.rfc-editor.org/info/rfc3501>

Klensin, J. "Simple Mail Transfer Protocol" RFC 5321 DOI 10.17487/RFC5321
<https://www.rfc-editor.org/info/rfc5321>

Saint-Andre, P. "Extensible Messaging and Presence Protocol (XMPP): Core" RFC
6120 DOI 10.17487/RFC6120 <https://www.rfc-editor.org/info/
rfc6120>

Appendix A. The ASN.1 schema for Vortex messages
The following sections contain the ASN.1 modules specifying the MessageVortex Protocol.

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 34

A34 APPENDIX A. THE RFC DRAFT DOCUMENT

A.1. The Main MessageVortex Blocks

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 35

A35

MessageVortex-Schema DEFINITIONS EXPLICIT TAGS ::=
BEGIN
 EXPORTS PrefixBlock, InnerMessageBlock, RoutingBlock,
 maxWorkspaceID;
 IMPORTS SymmetricKey, AsymmetricKey, MacAlgorithmSpec, CipherSpec
 FROM MessageVortex-Ciphers
 HeaderRequest
 FROM MessageVortex-Requests
 PayloadOperation, MapBlockOperation
 FROM MessageVortex-Operations

 UsagePeriod, BlendingSpec
 FROM MessageVortex-Helpers;

 --***
 -- Constant definitions
 --***
 -- maximum serial number
 maxSerial INTEGER ::= 4294967295
 -- maximum number of administrative requests
 maxNumOfRequests INTEGER ::= 8
 -- maximum number of seconds which the message might be delayed
 -- in the local queue (starting from startOffset)
 maxDurationOfProcessing INTEGER ::= 86400
 -- maximum id of an operation
 minWorkspaceID INTEGER ::= 32768
 -- maximum number of routing blocks in a message
 maxRoutingBlks INTEGER ::= 127
 -- maximum number a block may be replayed
 maxNumOfReplays INTEGER ::= 127
 -- maximum number of payload chunks in a message
 maxPayloadBlks INTEGER ::= 127
 -- maximum number of seconds a proof of non revocation may be old
 maxTimeCachedProof INTEGER ::= 86400
 -- The maximum ID of the workspace
 maxWorkspaceId INTEGER ::= 65535
 -- The maximum number of assembly instructions per combo
 maxAssemblyInstr INTEGER ::= 255

 --***
 -- Types
 --***
 PuzzleIdentifier ::= OCTET STRING (SIZE(0..32))
 ChainSecret ::= OCTET STRING (SIZE (16..64))

 --***
 -- Block Definitions
 --***
 PrefixBlock ::= SEQUENCE {
 version [0] INTEGER OPTIONAL,
 key [2] SymmetricKey
 }

 InnerMessageBlock ::= SEQUENCE {
 padding OCTET STRING,
 prefix CHOICE {

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 36

A36 APPENDIX A. THE RFC DRAFT DOCUMENT

 plain [11011] PrefixBlock,
 -- contains prefix encrypted with receivers
 -- public key
 encrypted [11012] OCTET STRING
 },
 header CHOICE {
 -- debug/internal use only
 plain [11021] HeaderBlock,
 -- contains encrypted identity block
 encyrpted [11022] OCTET STRING
 },
 -- contains signature of Identity [as stored in
 -- HeaderBlock; signed unencrypted HeaderBlock without
 -- Tag]
 identitySignature OCTET STRING,
 -- contains routing information (next hop) for the
 -- payloads
 routing [11001] CHOICE {
 plain [11031] RoutingBlock,
 -- contains encrypted routing block
 encyrpted [11032] OCTET STRING
 },
 -- contains the actual payload
 payload SEQUENCE (SIZE (0..maxPayloadBlks))
 OF OCTET STRING
 }

 HeaderBlock ::= SEQUENCE {
 -- Public key of the identity representing this
 -- transmission
 identityKey AsymmetricKey,
 -- serial identifying this block
 serial INTEGER (0..maxSerial),
 -- number of times this block may be replayed
 -- (Tuple is identityKey, serial while
 -- UsagePeriod of block)
 maxReplays INTEGER (0..maxNumOfReplays),
 -- subsequent Blocks are not processed before
 -- valid time.
 -- Host may reject too long retention.
 -- Recomended validity support >=1Mt.
 valid UsagePeriod,
 -- contains the MAC-Algorithm used for signing
 signAlgorithm MacAlgorithmSpec,
 -- contains administrative requests such as
 -- quota requests
 requests SEQUENCE
 (SIZE (0..maxNumOfRequests))
 OF HeaderRequest ,
 -- Reply Block for the requests
 requestReplyBlock RoutingCombo OPTIONAL,
 -- padding and identitifier required to solve
 -- the cryptopuzzle
 identifier [12201] PuzzleIdentifier OPTIONAL,
 -- This is for solving crypto puzzles
 proofOfWork[12202] OCTET STRING OPTIONAL
 }

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 37

A37

 RoutingBlock ::= SEQUENCE {
 -- contains the routingCombos
 routing [331] SEQUENCE
 (SIZE (0..maxRoutingBlks))
 OF RoutingCombo,
 -- contains the mapping operations to map
 -- payloads to the workspace
 mappings [332] SEQUENCE
 (SIZE (0..maxPayloadBlks))
 OF MapBlockOperation,
 -- contains a routing block which may be used
 -- when sending error messages back to the quota
 -- owner this routing block may be cached for
 -- future use
 replyBlock [332] SEQUENCE {
 murb RoutingCombo,
 maxReplay INTEGER,
 validity UsagePeriod
 } OPTIONAL
 }

 RoutingCombo ::= SEQUENCE {
 -- contains the period when the payload should
 -- be processed.
 -- Router might refuse too long queue retention
 -- Recommended support for retention >=1h
 minProcessTime INTEGER
 (0..maxDurationOfProcessing),
 maxProcessTime INTEGER
 (0..maxDurationOfProcessing),
 -- The message key to encrypt the message
 peerKey [401] SEQUENCE
 (SIZE (1..maxNumOfReplays))
 OF SymmetricKey OPTIONAL,
 -- contains the next recipient
 recipient [402] BlendingSpec,
 -- PrefixBlock encrypted with message key
 mPrefix [403] SEQUENCE
 (SIZE (1..maxNumOfReplays))
 OF OCTET STRING OPTIONAL,
 -- PrefixBlock encrypted with sender key
 cPrefix [404] OCTET STRING OPTIONAL,
 -- HeaderBlock encrypted with sender key
 header [405] OCTET STRING OPTIONAL,
 -- RoutingBlock encrypted with sender key
 routing [406] OCTET STRING OPTIONAL,
 -- contains information for building messages
 -- (when used as MURB)
 -- ID 0 denotes original/local message
 -- ID 1-maxPayloadBlks denotes target message
 -- ID 32767 denotes a solicited reply block
 -- 32768-maxWorkspaceId shared workspace for all
 -- blocks of this identity)
 assembly [407] SEQUENCE
 (SIZE (0..maxAssemblyInstr))
 OF PayloadOperation,
 -- optional for storage of the arrival time
 validity [408] UsagePeriod OPTIONAL

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 38

A38 APPENDIX A. THE RFC DRAFT DOCUMENT

 }

END

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 39

A39

A.2. The MessageVortex Ciphers Structures

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 40

A40 APPENDIX A. THE RFC DRAFT DOCUMENT

MessageVortex-Ciphers DEFINITIONS EXPLICIT TAGS ::=
BEGIN
 EXPORTS SymmetricKey, AsymmetricKey, MacAlgorithmSpec,
 MacAlgorithm, CipherSpec, PRNGType;

 CipherSpec ::= SEQUENCE {
 asymmetric [16001] AsymAlgSpec OPTIONAL,
 symmetric [16002] SymAlgSpec OPTIONAL,
 mac [16003] MacAlgorithmSpec OPTIONAL,
 cipherUsage [16004] CipherUsage
 }

 CipherUsage ::= ENUMERATED {
 sign (200),
 encrypt (210)
 }

 SymAlgSpec ::= SEQUENCE {
 algorithm [16101]SymmetricAlgorithm,
 -- if ommited: pkcs7
 padding [16102]CipherPadding OPTIONAL,
 -- if ommited: cbc
 mode [16103]CipherMode OPTIONAL,
 parameter [16104]AlgParameters OPTIONAL
 }

 AsymAlgSpec ::= SEQUENCE {
 algorithm AsymmetricAlgorithm,
 -- if ommited: pkcs1
 padding [16102]CipherPadding OPTIONAL,
 parameter AlgParameters OPTIONAL
 }

 SymmetricKey ::= SEQUENCE {
 keyType SymmetricAlgorithm,
 parameter AlgParameters,
 key OCTET STRING (SIZE(16..512))
 }

 AsymmetricKey ::= SEQUENCE {
 keyType AsymmetricAlgorithm,
 -- private key encoded as PKCS#8/PrivateKeyInfo
 publicKey [2] OCTET STRING,
 -- private key encoded as
 -- X.509/SubjectPublicKeyInfo
 privateKey [3] OCTET STRING OPTIONAL
 }

 SymmetricAlgorithm ::= ENUMERATED {
 aes128 (1000), -- required
 aes192 (1001), -- optional support
 aes256 (1002), -- required
 camellia128 (1100), -- required
 camellia192 (1101), -- optional support
 camellia256 (1102), -- required
 twofish128 (1200), -- optional support
 twofish192 (1201), -- optional support

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 41

A41

 twofish256 (1202) -- optional support
 }

 AsymmetricAlgorithm ::= ENUMERATED {
 rsa (2000),
 dsa (2100),
 ec (2200),
 ntru (2300)
 }
 ECCurveType ::= ENUMERATED{
 secp384r1 (2500),
 sect409k1 (2501),
 secp521r1 (2502)
 }
 AlgParameters ::= SEQUENCE {
 keySize [9000] INTEGER (0..65535) OPTIONAL,
 curveType [9001] ECCurveType OPTIONAL,
 iv [9002] OCTET STRING OPTIONAL,
 nonce [9003] OCTET STRING OPTIONAL,
 mode [9004] CipherMode OPTIONAL,
 padding [9005] CipherPadding OPTIONAL,
 n [9010] INTEGER OPTIONAL,
 p [9011] INTEGER OPTIONAL,
 q [9012] INTEGER OPTIONAL,
 k [9013] INTEGER OPTIONAL,
 t [9014] INTEGER OPTIONAL
 }

 CipherMode ::= ENUMERATED {
 cbc (10000), -- required
 ctr (10001), -- required
 ccm (10002), -- optional support
 gcm (10003), -- optional support
 ocb (10004), -- optional support
 ofb (10005), -- optional support
 xts (10006), -- optional support
 none (10100) -- required
 }

 CipherPadding ::= ENUMERATED {
 none (10200), -- required
 pkcs1 (10201), -- required
 rsaesOaep (10202), -- optional support
 oaepSha256Mgf1 (10203), -- optional support
 pkcs7 (10301), -- required
 ap (10221) -- required
 }

 MacAlgorithm ::= ENUMERATED {
 sha3-256 (3000), -- required
 sha3-384 (3001), -- optional support
 sha3-512 (3002), -- required
 ripemd160 (3100), -- optional support
 ripemd256 (3101), -- required
 ripemd320 (3102) -- optional support
 }

 MacAlgorithmSpec ::= SEQUENCE {

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 42

A42 APPENDIX A. THE RFC DRAFT DOCUMENT

 algorithm MacAlgorithm,
 parameter AlgParameters
 }

 PRNGAlgorithmSpec ::= SEQUENCE {
 type PRNGType,
 seed OCTET STRING
 }

 PRNGType ::= ENUMERATED {
 mrg32k3a (10300), -- required
 blumMicali (10301) -- required
 }

END

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 43

A43

A.3. The MessageVortex Request Structures

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 44

A44 APPENDIX A. THE RFC DRAFT DOCUMENT

MessageVortex-Requests DEFINITIONS EXPLICIT TAGS ::=
BEGIN
 EXPORTS HeaderRequest;
 IMPORTS RequirementBlock
 FROM MessageVortex-Requirements
 UsagePeriod, NodeSpec
 FROM MessageVortex-Helpers;

 HeaderRequest ::= CHOICE {
 identity [0] HeaderRequestIdentity,
 capabilities [1] HeaderRequestCapability,
 messageQuota [2] HeaderRequestIncreaseMessageQuota,
 transferQuota [3] HeaderRequestIncreaseTransferQuota,
 quotaQuery [4] HeaderRequestQuota,
 nodeQuery [5] HeaderRequestNodes,
 replace [6] HeaderRequestReplaceIdentity
 }

 HeaderRequestIdentity ::= SEQUENCE {
 period UsagePeriod
 }

 HeaderRequestReplaceIdentity ::= SEQUENCE {
 replace SEQUENCE {
 old NodeSpec,
 new NodeSpec OPTIONAL
 },
 identitySignature OCTET STRING
 }

 HeaderRequestQuota ::= SEQUENCE {
 }

 HeaderRequestNodes ::= SEQUENCE {
 numberOfNodes INTEGER (0..255)
 }

 HeaderRequestIncreaseMessageQuota ::= SEQUENCE {
 messages INTEGER (0..4294967295)
 }

 HeaderRequestIncreaseTransferQuota ::= SEQUENCE {
 size INTEGER (0..4294967295)
 }

 HeaderRequestCapability ::= SEQUENCE {
 period UsagePeriod
 }

 HeaderRequestUpgrade ::= SEQUENCE {
 version OCTET STRING,
 identifier OCTET STRING
 }

END

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 45

A45

A.4. The MessageVortex Replies Structures

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 46

A46 APPENDIX A. THE RFC DRAFT DOCUMENT

MessageVortex-Replies DEFINITIONS EXPLICIT TAGS ::=
BEGIN
 EXPORTS SpecialBlock;
 IMPORTS BlendingSpec, NodeSpec
 FROM MessageVortex-Helpers
 RequirementBlock
 FROM MessageVortex-Requirements
 CipherSpec, PRNGType, MacAlgorithm
 FROM MessageVortex-Ciphers
 maxGFSize
 FROM MessageVortex-Operations
 maxNumberOfReplays
 FROM MessageVortex-Schema;

 SpecialBlock ::= CHOICE {
 capabilities [1] ReplyCapability,
 requirement [2] SEQUENCE (SIZE (1..127))
 OF RequirementBlock,
 quota [4] ReplyCurrentQuota,
 nodes [5] ReplyNodes,
 status [99] StatusBlock
 }

 StatusBlock ::= SEQUENCE {
 code StatusCode
 }

 StatusCode ::= ENUMERATED {

 -- System messages
 ok (2000),
 quotaStatus (2101),
 puzzleRequired (2201),

 -- protocol usage failures
 transferQuotaExceeded (3001),
 messageQuotaExceeded (3002),
 requestedQuotaOutOfBand (3003),
 identityUnknown (3101),
 messageChunkMissing (3201),
 messageLifeExpired (3202),
 puzzleUnknown (3301),

 -- capability errors
 macAlgorithmUnknown (3801),
 symmetricAlgorithmUnknown (3802),
 asymmetricAlgorithmUnknown (3803),
 prngAlgorithmUnknown (3804),
 missingParameters (3820),
 badParameters (3821),

 -- Mayor host specific errors
 hostError (5001)
 }

 ReplyNodes ::= SEQUENCE {
 node SEQUENCE (SIZE (1..5))

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 47

A47

 OF NodeSpec
 }

 ReplyCapability ::= SEQUENCE {
 -- supported ciphers
 cipher SEQUENCE (SIZE (2..256))
 OF CipherSpec,
 -- supported mac algorithms
 mac SEQUENCE (SIZE (2..256))
 OF MacAlgorithm,
 -- supported PRNGs
 prng SEQUENCE (SIZE (2..256))
 OF PRNGType,
 -- maximum number of bytes to be transferred
 -- (outgoing bytes in vortex message without blending)
 maxTransferQuota INTEGER (0..4294967295),
 -- maximum number of messages to process for this identity
 maxMessageQuota INTEGER (0..4294967295),
 -- maximum simultaneously tracked header serials
 maxHeaderSerials INTEGER (0..4294967295),
 -- maximum simultaneously valid build operations in workspace
 maxBuildOps INTEGER (0..4294967295),
 -- maximum payload size
 maxPayloadSize INTEGER (0..4294967295),
 -- maximum active payloads (without intermediate products)
 maxActivePayloads INTEGER (0..4294967295),
 -- maximum header lifespan in seconds
 maxHeaderLive INTEGER (0..4294967295),
 -- maximum number of replays accepted,
 maxReplay INTEGER (0..maxNumberOfReplays),
 -- Supported inbound blending
 supportedBlendingIn SEQUENCE OF BlendingSpec,
 -- Supported outbound blending
 supportedBlendingOut SEQUENCE OF BlendingSpec,
 -- supported galoise fields
 supportedGFSize SEQUENCE OF INTEGER (1..maxGF)
 }

 ReplyCurrentQuota ::= SEQUENCE {
 messages INTEGER (0..4294967295),
 size INTEGER (0..4294967295)
 }

 ReplyUpgrade ::= SEQUENCE {
 -- The offered version
 version [0] OCTET STRING,
 -- The offered identitfier
 identifier [1] OCTET STRING,
 -- The archive or blob containing the software
 blob [2] OCTET STRING OPTIONAL
 }

END

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 48

A48 APPENDIX A. THE RFC DRAFT DOCUMENT

A.5. The MessageVortex Requirements Structures

MessageVortex-Requirements DEFINITIONS EXPLICIT TAGS ::=
BEGIN
 EXPORTS RequirementBlock;
 IMPORTS MacAlgorithmSpec
 FROM MessageVortex-Ciphers
 UsagePeriod, UsagePeriod
 FROM MessageVortex-Helpers;

 RequirementBlock ::= CHOICE {
 puzzle [1] RequirementPuzzleRequired,
 payment [2] RequirementPaymentRequired
 }

 RequirementPuzzleRequired ::= SEQUENCE {
 -- bit sequence at beginning of hash from
 -- the encrypted identity block
 challenge BIT STRING,
 mac MacAlgorithmSpec,
 valid UsagePeriod,
 identifier INTEGER (0..4294967295)
 }

 RequirementPaymentRequired ::= SEQUENCE {
 account OCTET STRING,
 ammount REAL,
 currency Currency
 }

 Currency ::= ENUMERATED {
 btc (8001),
 eth (8002),
 zec (8003)
 }

END

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 49

A49

A.6. The MessageVortex Helpers Structures

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 50

A50 APPENDIX A. THE RFC DRAFT DOCUMENT

MessageVortex-Helpers DEFINITIONS EXPLICIT TAGS ::=
BEGIN
 EXPORTS UsagePeriod, BlendingSpec, NodeSpec;
 IMPORTS AsymmetricKey, SymmetricKey
 FROM MessageVortex-Ciphers;

 -- the maximum number of embeddable parameters
 maxNumberOfParameter INTEGER ::= 127

 UsagePeriod ::= CHOICE {
 absolute [2] AbsoluteUsagePeriod,
 relative [3] RelativeUsagePeriod
 }

 AbsoluteUsagePeriod ::= SEQUENCE {
 notBefore [0] GeneralizedTime OPTIONAL,
 notAfter [1] GeneralizedTime OPTIONAL
 }

 RelativeUsagePeriod ::= SEQUENCE {
 notBefore [0] INTEGER OPTIONAL,
 notAfter [1] INTEGER OPTIONAL
 }

 -- contains a node spec of a routing point
 -- At the moment either smtp:<email> or xmpp:<jabber>
 BlendingSpec ::= SEQUENCE {
 target [1] NodeSpec,
 blendingType [2] IA5String,
 parameter [3] SEQUENCE
 (SIZE (0..maxNumberOfParameter))
 OF BlendingParameter
 }

 BlendingParameter ::= CHOICE {
 offset [1] INTEGER,
 symmetricKey [2] SymmetricKey,
 asymmetricKey [3] AsymmetricKey,
 passphrase [4] OCTET STRING
 }

 NodeSpec ::= SEQUENCE {
 transportProtocol [1] Protocol,
 recipientAddress [2] IA5String,
 recipientKey [3] AsymmetricKey OPTIONAL
 }

 Protocol ::= ENUMERATED {
 smtp (100),
 xmmp (110)
 }

END

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 51

A51

A.7. The MessageVortex Additional Structures

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 52

A52 APPENDIX A. THE RFC DRAFT DOCUMENT

-- States reflected:
-- Tuple()=Val()[vallidity; allowed operations]
-- {Store}
-- - Tuple(identity)=Val(messageQuota,transferQuota,
-- sequence of Routingblocks for Error Message
-- Routing) [validity; Requested at creation; may
-- be extended upon request] {identityStore}
-- - Tuple(Identity,Serial)=maxReplays ['valid' from
-- Identity Block; from First Identity Block; may
-- only be reduced] {IdentityReplayStore}

MessageVortex-NonProtocolBlocks DEFINITIONS
 EXPLICIT TAGS ::=
BEGIN
 IMPORTS PrefixBlock, InnerMessageBlock,
 RoutingBlock,
 maxWorkspaceID
 FROM MessageVortex-Schema
 UsagePeriod, NodeSpec, BlendingSpec
 FROM MessageVortex-Helpers
 AsymmetricKey
 FROM MessageVortex-Ciphers
 RequirementBlock
 FROM MessageVortex-Requirements;

 -- maximum size of transfer quota in bytes of an
 -- identity
 maxTransferQuota INTEGER ::= 4294967295
 -- maximum # of messages quota in messages of an
 -- identity
 maxMessageQuota INTEGER ::= 4294967295

 -- do not use these blocks for protocol encoding
 -- (internal only)
 VortexMessage ::= SEQUENCE {
 prefix CHOICE {
 plain [10011] PrefixBlock,
 -- contains prefix encrypted with receivers
 -- public key
 encrypted [10012] OCTET STRING
 },
 innerMessage CHOICE {
 plain [10021] InnerMessageBlock,
 -- contains inner message encrypted with
 -- Symmetric key from prefix
 encrypted [10022] OCTET STRING
 }
 }

 MemoryPayloadChunk ::= SEQUENCE {
 id INTEGER (0..maxWorkspaceID),
 payload [100] OCTET STRING,
 validity UsagePeriod
 }

 IdentityStore ::= SEQUENCE {
 identities SEQUENCE (SIZE (0..4294967295))

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 53

A53

 OF IdentityStoreBlock
 }

 IdentityStoreBlock ::= SEQUENCE {
 valid UsagePeriod,
 messageQuota INTEGER (0..maxMessageQuota),
 transferQuota INTEGER (0..maxTransferQuota),
 -- if omitted this is a node identity
 identity [1001] AsymmetricKey OPTIONAL,
 -- if ommited own identity key
 nodeAddress [1002] NodeSpec OPTIONAL,
 -- Contains the identity of the owning node;
 -- May be ommited if local node
 nodeKey [1003] SEQUENCE OF AsymmetricKey
 OPTIONAL,
 routingBlocks [1004] SEQUENCE OF RoutingBlock
 OPTIONAL,
 replayStore [1005] IdentityReplayStore,
 requirement [1006] RequirementBlock OPTIONAL
 }

 IdentityReplayStore ::= SEQUENCE {
 replays SEQUENCE (SIZE (0..4294967295))
 OF IdentityReplayBlock
 }

 IdentityReplayBlock ::= SEQUENCE {
 identity AsymmetricKey,
 valid UsagePeriod,
 replaysRemaining INTEGER (0..4294967295)
 }

END

Appendix B. Changelog

Version
#

Date Changes

0 11-2018 Initial version

1 02-2019 Removed term block and added more precise spec about blending.
Change in spec for XMPP blending (from XEP-234 to XEP-231).
Restructured ASN.1.

2 03-2019 Language and consistency improvements. Added example for chunked
plain embedding. Added pseudo-code for incoming message processing.
Improved wording of hashes in ASN.1.

3 09-2019 Removed LaTeX notation in padding.

4 03-2020 Added spec for Software update using MV. Minor language
improvements.

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 54

A54 APPENDIX A. THE RFC DRAFT DOCUMENT

Version
#

Date Changes

5 09-2020 Reinserted lost ASN.1 specs (unintentinally lost in last two versions).
Added changelog. Modified padding to improve credibility of bad
values.

6 02-2021 Removed some outdated references and updated draft according to the
final research document. Refining of language.

7 04-2021 Lectorate and improved rendering.

Table 1: changes in versions

Author's Address
Martin Gwerder
University of Applied Sciences and Arts Northwestern
Switzerland
Bahnhofstrasse 5
CH- 5210 Windisch
Switzerland

 +41 56 202 76 81 Phone:
 rfc@messagevortex.net Email:

Internet-Draft MessageVortex Protocol April 2021

Gwerder Expires 7 October 2021 Page 55

A55

A56 APPENDIX B. GLOSSARY

B Glossary
adversary In this work, we referr to an adversary as any entity opposing to the privacy of a
message. For a more throughout definition, refer to section 11.1

anonymity We refer to the term anonymity as defined in [124]. “Anonymity of a subject
means that the subject is not identifiable within a set of subjects, the anonymity set.”1

Sender Anonymity The anonymity set is the set of all possible subjects. For actors,
the anonymity set consists of the subjects who might cause an action. For actees, the
anonymity set consists of the subjects which might be acted upon. Therefore, a sender
may be anonymous (sender anonymity) only within a set of potential senders, his/her
sender anonymity set, which itself may be a subset of all subjects worldwide who may
send a message from time to time.

Receiver Anonymity The same for the recipient means that a recipient may be anony-
mous (recipient anonymity) only within a set of potential recipients, his/her recipient
anonymity set. Both anonymity sets may be disjoint, be the same, or they may overlap.
The anonymity sets may vary over time.

agent An agent is a single component of a service provided to a user or other services.

carrier message A transport layer message containing an embedded VortexMessage. In an
ideal implementation a carrier message is not identifiable as a carrier of a VortexMessage.

decoy traffic Any data transported between routers that have no relevance to the message
at the final destination and are not needed for the flow of the message.

eID An ephemeral identity (eID) is a unique user of a VortexNode characterized by its public
key. This user is created with a VortexMessage and has only a limited lifetime. After expiry
all informations related to this identity are deleted.

EWS Exchange Web Services (EWS) are a Microsoft proprietary protocol to access exchange
services from a client. It may be regarded as an alternative to IMAPv4. This is, how-
ever, incomplete as EWS offers additional features such as User Configuration, Delegate
Management or Unified Messaging.

identity A tuple of a routable address and a public key. This tuple is a long-living tuple but
may be exchanged from time to time. An Identity is always assigned to a node, but one
node may have multiple identities.

jurisdiction A geographical area where a set of legal rules created by a single actor or a group
of actors apply, which contains executive capabilities (e.g., police, army, or secret service) to
enforce this set of legal rules. Most of these legal rules are based on their specific physical
location (e.g., German law is limited to the jurisdiction of Germany). Some jurisdictions
may over-arch multiple separated geographical locations (e.g., laws of the European Union)
or specific to some handpicked countries (e.g., International Covenant on Civil and Political
Rights). Due to their overlapping nature, multiple jurisdictions may have contradictory
rules applying for the same event.

IMAP IMAP (currently IMAPv4) is a typical protocol used between a Client MRA and a
Remote MDA. It has been specified in its current version in [35]. The protocol is capable
of fully maintaining a server-based message store. This includes the capability of adding,
modifying, and deleting messages and folders of a mailstore. It does not include, however,
sending emails to other destinations outside the server-based store.

1footnotes omitted in quote

A57

ID A numerical identification reflecting a single payload chunk in a workspace of an eID.

IoI The Item of Intrest (IoI) are defined in [124] and refer to any subject action or entity
which is of interest to a potential adversary.

LMTP The Local Mail Transfer Protocol is defined in [115]. This RFC defines a protocol
similar to SMTP for local mail senders. This protocol allows a sender to have no mail queue
at all and thus simplifies the client implementation.

local mail store A Local Mail Store offers a persistent store on a local non-volatile memory
in which messages are being stored. A store may be flat or structured (e.g., supports folders).
A local mail store may be an authoritative store for mails or a “cache only” copy. It is
typically not a queue.

MDA An MDA provides uniform access to a local message store.

Remote MDA A Remote MDA typically supports a specific access protocol to access the
data stored within a local message store.

Local MDA A Local MDA typically gives local applications access to a server store. This
may be done through an API, a named socket, or similar mechanisms.

message The “real content” to be transferred from the sender to the recipient. Please note the
difference compared to a VortexMessage. We refer to the encoded form of a VortexMessage,
which may or may not contain parts of the original message always as VortexMessage.

MessageVortex The protocol described in this document.

MRA A Mail Receiving Agent is an agent, which receives emails from another agent. De-
pending on the used protocol, two subtypes of MRAs are available.

Client MRA A client MRA picks up emails in the server mail storage from a remote MDA.
Client MRAs usually connect through a standard protocol that was designed for client
access. Examples for such protocols are POP or IMAP.

Server MRA Unlike a client MRA, a server MRA listens passively for incoming connec-
tions and forwards received messages to an MTA for delivery and routing. A typical
protocol supported by a server MRA is SMTP

MS-OXCMAPIHTTP Microsofts Messaging Application Programming Interface (MAPI)
Extensions for HTTP specifies the Messaging Application Programming Interface (MAPI)
Extensions for HTTP in [107], which enable a client to access personal messaging and
directory data on a server by sending HTTP requests and receiving responses returned on
the same HTTP connection. This protocol extends HTTP and HTTPS.

MSA A Mail Sending Agent. This agent sends emails to a Server MRA.

MTA A Mail Transfer Agent. This transfer agent routes emails between other components.
Typically an MTA receives emails from an MRA and forwards them to an MDA or MSA. The
main task of an MTA is to provide reliable queues and solid track of all emails as long as
they are not forwarded to another MTA or local storage.

MTS A Mail Transfer Service. This is a set of agents that provide the functionality to send
and receive messages and forward them to a local or remote store.

MSS A Mail Storage Service. This is a set of agents providing a reliable store for local mail
accounts. It also provides interfacing, which enables clients to access the users’ mail.

MUA A Mail User Agent. This user-agent reads emails from local storage and allows a user
to read existing emails, create and modify emails.

MURB A multi-use reply block. This type of routing block is provided by a sender to give a

A58 APPENDIX B. GLOSSARY

node the possibility to route back answers without the knowledge of the location of the
sender. In contrast to a SURB, a MURB may be used multiple times. The number of times is
regulated by the maxReplay field. Furthermore, a MURB must provide multiple peer keys
for all routing steps to avoid repeating patterns of key blocks. This structure makes a MURB
much larger than a SURB.

operation A function transforming the content of a payload block. Mes-
sageVortex supports four categories of operations. Relevant for the service are
addRedundancy/removeRedundancy, encrypt/decrypt, and split/merge. Additionally for
operations there is a mapping operation allowing to map the payloads of a message into
the payload space or vice-versa.

payload Any data transported between routers regardless of the meaningfulness or relevance
to the VortexMessage.

payload block A single block attached to a VortexMessage representing either the message
or the decoy content.

privacy From the Oxford English Dictionary[156]:

“ 1. The state or condition of being withdrawn from the society of others, or
from the public interest; seclusion. The state or condition of being alone,
undisturbed, or free from public attention, as a matter of choice or right;
freedom from interference or intrusion.

2. Private or retired place; private apartments; places of retreat.

3. Absence or avoidance of publicity or display; a condition approaching to
secrecy or concealment. Keeping of a secret.

4. A private matter, a secret; private or personal matters or relations; The private
parts.

5. Intimacy, confidential relations.

6. The state of being privy to some act.

”In this work, privacy is related to definition two. Mails should be able to be handled as a
virtual private place where no one knows who is talking to whom and about what or how
frequent (except for directly involved people).

pseudonymity As Pseudonymity we take the definition as specified in [124].

“ A pseudonym is an identifier of a subject other than one of the subject’s real names.
The subject which the pseudonym refers to is the holder of the pseudonym. A
subject is pseudonymous if a pseudonym is used as an identifier instead of one of
its real names.2 ”POP POP (currently in version 3) is a typical protocol to be used between a Client MRA and

a Remote MDA. Unlike IMAP, it is not able to maintain a mail store. Its sole purpose is to
fetch and delete emails in a server-based store. Modifying Mails or even handling a complex
folder structure is not feasible with POP.

recipient The user or process destined to receive the message in the end.

A59

router Any VortexNodewhich is processing messages. Please note that all VortexNodesare
routers.

routing block A block in the VortexMessagecontaining all the instructions for processing
the current message. It may furthermore contain additional routing blocks to compose
subsequent messages. The routing block is protected by the sender key Ksender.

routing graph A graphical representation of a routing block. A routing graph is a directed
multigraph with VortexNodes as nodes and VortexMessages as edges. For further details see
section 22.3.1.

RBB A routing block builder (RBB) is a VortexNode assembling the operations and hops
for a message. If the RBB is not equal to the sender of the message, the receiver may be
anonymous to the sender.

sender The user or process originally composing the message. We refer as the sender to
both the human creator or initiator of a message, as well as the process of assembling and
preparing the message.

immediate sender The actually peering sender. This is the sender which sent the current
message.

server admin We regard a server admin as a person with high privileges and profound
technical knowledge of a server and its associated technology. A server admin may have
access to one or multiple servers of the same kind.

service A service is an endpoint on a server providing the functionality to a client. This
service may consist of several agents (agent).

SMTP SMTP is the most commonly used protocol for sending emails across the Internet. In
its current version it has been specified in [83].

storage A store to keep data. It is assumed to be temporary or persistent.

SURB A single-use reply block. This type of routing block is provided by a sender to give a
node the possibility to route back answers without the knowledge of the location of the
sender. A SURB may only be used once subsequent uses of the block are not possible. The
lifetime of a SURB is typically limited to minutes or hours.

UBM We use the term Unsolicited Bulk Message as a term for any mass message being
received by a user without prior explicit consent. A less formal term for such a message in
email terminology is spam or junk mail.

undetectability As undetectability we take the definition as specified in [124].

“ Undetectability of an item of interest (IOI) from an attacker’s perspective means
that the attacker cannot sufficiently distinguish whether it exists or not.3 ”unlikability We refer to the term unlinkability as defined in [124]. “Unlinkability of two

or more items of interest (IOIs, e.g., subjects, messages, actions, ...) from an attacker’s
perspective means that within the system (comprising these and possibly other items), the
attacker cannot sufficiently distinguish whether these IOIs are related or not.

unobservability As unobservability we take the definition as specified in [124].

“ Unobservability of an item of interest (IOI) means

• undetectability of the IOI against all subjects uninvolved in it and

A60 APPENDIX B. GLOSSARY

• anonymity of the subject(s) involved in the IOI even against the other sub-
ject(s) involved in that IOI.

”As mentioned in this paper, unobservability raises the bar of required attributes again (⇒
reads “implies”):

censorship resistance ⇒ unobservability
unobserability ⇒ undetectability
unobserability ⇒ anonymity

user Any entity operating a VortexNode.

VortexMessage The encoded message passed from one VortexNode to another. The Vor-
texMessage is typically considered before any embedding takes place.

VortexNode A hardware node running the MessageVortex specific software. These nodes
typically run on always-connected, user-run devices such as mobile phones or tablets.

workspace A storage uniquely allocated for a specific eID. Within this workspace, we find
all received payloads referred by an ID, all routing blocks to be processed, and all unexpired
operations.

XMPP The Extensible Messaging and Presence Protocol (XMPP)[138, 139] was formerly also
known as Jabber protocol. It is an extensible instant messenger protocol widely adopted in
chat clients.

zero trust Zero trust is not a truly researched model in systems engineering. It is, however,
widely adopted. We refer in this work to the zero trust model when denying the trust in
any infrastructure not directly controlled by the sending or receiving entity. This distrust
extends especially but not exclusively to the network transporting the message, the nodes
storing and forwarding messages, the backup taken from any system except the client
machines of the sending and receiving parties, and software, hardware, and operators of
all systems not explicitly trusted. As explicitly trusted in our model, we do regard the user
sending a message (and his immediate hardware used for sending the message) and the
users receiving the messages. Trust in between the receiving parties (if more than one) of a
message is not necessarily given.

A61

C Bibliography
[1] 754-2008 - IEEE Standard for Floating-Point Arithmetic - Redline. Aug. 2008. doi: 10.1109/

IEEESTD.2008.5976968. url: http://ieeexplore.ieee.org/servlet/
opac?punumber=5976966 (cit. on p. 110).

[2] Spencer Ackerman. NSA warned to rein in surveillance as agency reveals even greater scope.
Newspaper. June 2013. url: https://www.theguardian.com/world/2013/
jul/17/nsa-surveillance-house-hearing (cit. on p. 3).

[3] Luis von Ahn, Andrew Bortz, and Nicholas J. Hopper. “k-Anonymous Message Transmission”.
In: Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS
2003). Ed. by Vijay Atluri and Peng Liu. ACM Press, Oct. 2003, pp. 122–130. doi: 10.1145/
948109.948128. url: http://www.abortz.com/papers/k-anon.pdf
(cit. on pp. 13, 57).

[4] Herve Aiache, Cedric Tavernier, and Corinne Sieux. “Reed-Solomon codes and multi-path
strategies to improve privacy performance over ad hoc networks”. In: 2008 3rd International
Symposium on Wireless Pervasive Computing. IEEE. 2008, pp. 430–435. url: https://
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4556244 (cit. on
p. 36).

[5] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas Zacharias. “MCMix: Anony-
mous messaging via secure multiparty computation”. In: 26th {USENIX} Security Sympo-
sium ({USENIX} Security 17). 2017, pp. 1217–1234. url: https://www.usenix.org/
system/files/conference/usenixsecurity17/sec17-alexopoulos.
pdf (cit. on p. 47).

[6] Oriol Amat, John Blake, and Jack Dowds. THE ETHICS OF CREATIVE ACCOUNTING. Journal of
Economic Literature classification. Dec. 1999. doi: 10.1007/BF02639318. url: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.
7724&rep=rep1&type=pdf (cit. on p. 4).

[7] AMQP v1.0. AMQP.org, Oct. 2011. url: http://www.amqp.org/confluence/
display/AMQP/AMQP+Specification (cit. on p. 98).

[8] Banks Andrew and Gupta Rahul.MQTT. en. OASIS, Apr. 2014. url:http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf (cit. on p. 97).

[9] Sebastian Angel and Srinath Setty. “Unobservable communication over fully untrusted in-
frastructure”. In: 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16). 2016, pp. 551–569. url: https://www.usenix.org/system/files/
conference/osdi16/osdi16-angel.pdf (cit. on p. 48).

[10] James Ball. NSA’s Prism surveillance program: how it works and what it can do. Newspaper. June
2013. url: https://www.theguardian.com/world/2013/jun/08/nsa-
prism-server-collection-facebook-google (cit. on p. 3).

[11] Marco Valerio Barbera, Vasileios P. Kemerlis, Vasilis Pappas, and Angelos Keromytis.
“CellFlood: Attacking Tor Onion Routers on the Cheap”. In: Proceedings of ESORICS 2013.
Sept. 2013. url: http://www.cs.columbia.edu/~vpk/papers/cellflood.
esorics13.pdf (cit. on p. 43).

[12] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker. “Low-
Resource Routing Attacks Against Tor”. In: Proceedings of the Workshop on Privacy in the
Electronic Society (WPES 2007). Washington, DC, USA, Oct. 2007. doi: 10.1145/1314333.
1314336. url: http://systems.cs.colorado.edu/~bauerk/papers/
wpes25-bauer.pdf (cit. on p. 43).

[13] Mike Belshe, Roberto Peon, and Martin Thomson. Hypertext Transfer Protocol Version 2
(HTTP/2). RFC 7540. May 2015. doi: 10.17487/rfc7540. url: https://rfc-
editor.org/rfc/rfc7540.txt (cit. on p. 96).

https://doi.org/10.1109/IEEESTD.2008.5976968
https://doi.org/10.1109/IEEESTD.2008.5976968
http://ieeexplore.ieee.org/servlet/opac?punumber=5976966
http://ieeexplore.ieee.org/servlet/opac?punumber=5976966
https://www.theguardian.com/world/2013/jul/17/nsa-surveillance-house-hearing
https://www.theguardian.com/world/2013/jul/17/nsa-surveillance-house-hearing
https://doi.org/10.1145/948109.948128
https://doi.org/10.1145/948109.948128
http://www.abortz.com/papers/k-anon.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4556244
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4556244
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-alexopoulos.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-alexopoulos.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-alexopoulos.pdf
https://doi.org/10.1007/BF02639318
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.7724&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.7724&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.7724&rep=rep1&type=pdf
http://www.amqp.org/confluence/display/AMQP/AMQP+Specification
http://www.amqp.org/confluence/display/AMQP/AMQP+Specification
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-angel.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-angel.pdf
https://www.theguardian.com/world/2013/jun/08/nsa-prism-server-collection-facebook-google
https://www.theguardian.com/world/2013/jun/08/nsa-prism-server-collection-facebook-google
http://www.cs.columbia.edu/~vpk/papers/cellflood.esorics13.pdf
http://www.cs.columbia.edu/~vpk/papers/cellflood.esorics13.pdf
https://doi.org/10.1145/1314333.1314336
https://doi.org/10.1145/1314333.1314336
http://systems.cs.colorado.edu/~bauerk/papers/wpes25-bauer.pdf
http://systems.cs.colorado.edu/~bauerk/papers/wpes25-bauer.pdf
https://doi.org/10.17487/rfc7540
https://rfc-editor.org/rfc/rfc7540.txt
https://rfc-editor.org/rfc/rfc7540.txt

A62 APPENDIX B. GLOSSARY

[14] Alex Biryukov, Ivan Pustogarov, and Ralf Philipp Weinmann. “TorScan: Tracing Long-lived
Connections and Differential Scanning Attacks”. In: Proceedings of the European Symposium
Research Computer Security - ESORICS’12. Springer, Sept. 2012. url: http://freehaven.
net/anonbib/papers/torscan-esorics2012.pdf (cit. on p. 43).

[15] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. “Trawling for Tor Hidden Ser-
vices: Detection, Measurement, Deanonymization”. In: Proceedings of the 2013 IEEE Symposium
on Security and Privacy. May 2013. url: http://www.ieee-security.org/TC/
SP2013/papers/4977a080.pdf (cit. on p. 43).

[16] Manuel Blum and Silvio Micali. “How to generate cryptographically strong sequences of
pseudorandom bits”. In: SIAM journal on Computing 13.4 (1984), pp. 850–864. doi: 10.1137/
0213053. url: http://dx.doi.org/10.1137/0213053 (cit. on p. 94).

[17] Floor Boon, Steven Derix, and Huib Modderkolk. Document Snowden: Nederland al sinds 1946
doelwit van NSA. Newspaper. Nov. 2013. url: https://www.nrc.nl/nieuws/2013/
11/23/nederland-sinds-1946-doelwit-van-nsa-a1429490 (cit. on
p. 3).

[18] Carsten Bormann, Klaus Hartke, and Zach Shelby. RFC7252: The Constrained Application
Protocol (CoAP). RFC 7252. June 2014. doi: 10.17487/rfc7252. url: https://rfc-
editor.org/rfc/rfc7252.txt (cit. on p. 98).

[19] S. Bradner. RFC2119 Key words for use in RFCs to Indicate Requirement Levels. IETF, 1997. url:
http://tools.ietf.org/pdf/rfc2119.pdf (cit. on p. 115).

[20] Has F5 Really Been Broken. Department of Computing, University of Sur-
rey, Guildford GU2 7XH, England. IET, 2009. doi: 10 . 1049 / ic . 2009 .
0245. url: https : / / pdfs . semanticscholar . org / 4d6c /
d9d7e3a419ea74a4a363a36fcc674e89ecc7.pdf (cit. on pp. 25, 74, 106).

[21] BSI. Migration zu Post-Quanten-Kryptografie. Bundesamt für Sicherheit in der Informa-
tionstechnik. Mar. 2020. url: https : / / www . bsi . bund . de / SharedDocs /
Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf?__
blob=publicationFile&v=2 (cit. on pp. 62, 66).

[22] Lake Bu, Hien D Nguyen, and Michel A Kinsy. “RASSS: a perfidy-aware protocol for designing
trustworthy distributed systems”. In: 2017 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE. 2017, pp. 1–6 (cit. on p. 152).

[23] Travis Burtrum. XEP-0418: DNS Queries over XMPP (DoX). Mar. 2019. url: https://xmpp.
org/extensions/xep-0418.pdf (cit. on p. 25).

[24] Campaign Monitor. 2012. url: http : / / www . campaignmonitor . com /
resources/will-it-work/email-clients/ (cit. on p. 34).

[25] David Chaum. “Untraceable Electronic Mail, Return, Addresses, and Digital Pseudonyms”. In:
Communications of the ACM (1981). url: http://www.cs.utexas.edu/~shmat/
courses/cs395t_fall04/chaum81.pdf (cit. on pp. 16, 36, 41, 42).

[26] David Chaum. “The Dining Cryptographers Problem: Unconditional Sender and Recipient
Untraceability”. In: Journal of Cryptology 1 (1988), pp. 65–75. url:http://www.cs.ucsb.
edu/~ravenben/classes/595n-s07/papers/dcnet-jcrypt88.pdf (cit.
on pp. 39, 49).

[27] David Chaum, Claude Crépeau, and Ivan Damgard. “Multiparty unconditionally secure
protocols”. In: Proceedings of the twentieth annual ACM symposium on Theory of computing.
ACM. 1988, pp. 11–19. url: http://crypto.cs.mcgill.ca/~crepeau/PDF/
ASPUBLISHED/CCD88A.pdf (cit. on p. 65).

http://freehaven.net/anonbib/papers/torscan-esorics2012.pdf
http://freehaven.net/anonbib/papers/torscan-esorics2012.pdf
http://www.ieee-security.org/TC/SP2013/papers/4977a080.pdf
http://www.ieee-security.org/TC/SP2013/papers/4977a080.pdf
https://doi.org/10.1137/0213053
https://doi.org/10.1137/0213053
http://dx.doi.org/10.1137/0213053
https://www.nrc.nl/nieuws/2013/11/23/nederland-sinds-1946-doelwit-van-nsa-a1429490
https://www.nrc.nl/nieuws/2013/11/23/nederland-sinds-1946-doelwit-van-nsa-a1429490
https://doi.org/10.17487/rfc7252
https://rfc-editor.org/rfc/rfc7252.txt
https://rfc-editor.org/rfc/rfc7252.txt
http://tools.ietf.org/pdf/rfc2119.pdf
https://doi.org/10.1049/ic.2009.0245
https://doi.org/10.1049/ic.2009.0245
https://pdfs.semanticscholar.org/4d6c/d9d7e3a419ea74a4a363a36fcc674e89ecc7.pdf
https://pdfs.semanticscholar.org/4d6c/d9d7e3a419ea74a4a363a36fcc674e89ecc7.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf?__blob=publicationFile&v=2
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Krypto/Post-Quanten-Kryptografie.pdf?__blob=publicationFile&v=2
https://xmpp.org/extensions/xep-0418.pdf
https://xmpp.org/extensions/xep-0418.pdf
http://www.campaignmonitor.com/resources/will-it-work/email-clients/
http://www.campaignmonitor.com/resources/will-it-work/email-clients/
http://www.cs.utexas.edu/~shmat/courses/cs395t_fall04/chaum81.pdf
http://www.cs.utexas.edu/~shmat/courses/cs395t_fall04/chaum81.pdf
http://www.cs.ucsb.edu/~ravenben/classes/595n-s07/papers/dcnet-jcrypt88.pdf
http://www.cs.ucsb.edu/~ravenben/classes/595n-s07/papers/dcnet-jcrypt88.pdf
http://crypto.cs.mcgill.ca/~crepeau/PDF/ASPUBLISHED/CCD88A.pdf
http://crypto.cs.mcgill.ca/~crepeau/PDF/ASPUBLISHED/CCD88A.pdf

A63

[28] Chen Chen and Adrian Perrig. “Phi: Path-hidden lightweight anonymity protocol at net-
work layer”. In: Proceedings on Privacy Enhancing Technologies 2017.1 (2017), pp. 100–117.
doi: 10.1515/popets-2017-0007. url: https://www.degruyter.com/
downloadpdf/j/popets.2017.2017.issue-1/popets-2017-0007/
popets-2017-0007.pdf (cit. on p. 47).

[29] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. “Private information
retrieval”. In: Proceedings of IEEE 36th Annual Foundations of Computer Science. IEEE. 1995,
pp. 41–50. url: http://www.wisdom.weizmann.ac.il/~oded/PSX/pir2.
pdf (cit. on pp. 39, 48).

[30] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. “Freenet: A Distributed
Anonymous Information Storage and Retrieval System”. In: Proceedings of Designing Privacy
Enhancing Technologies: Workshop on Design Issues in Anonymity and Unobservability. July
2000, pp. 46–66. url: https://freenetproject.org/ (cit. on pp. 38, 39, 51).

[31] Commercial National Security Algorithm Suite. url: https : / / apps . nsa . gov /
iaarchive/programs/iad-initiatives/cnsa-suite.cfm (cit. on p. 19).

[32] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. “Riposte: An anonymous messaging
system handling millions of users”. In: 2015 IEEE Symposium on Security and Privacy. IEEE.
2015, pp. 321–338. url: https://ieeexplore.ieee.org/stamp/stamp.jsp?
arnumber=7163034 (cit. on pp. 39, 48).

[33] Henry Corrigan-Gibbs and Bryan Ford. “Dissent: Accountable Anonymous Group Messag-
ing”. In: Proceedings of the 17th ACM Conference on Computer and Communications Secu-
rity. CCS ’10. Chicago, Illinois, USA: ACM, 2010, pp. 340–350. isbn: 978-1-4503-0245-6. doi:
10.1145/1866307.1866346. url: http://doi.acm.org/10.1145/
1866307.1866346 (cit. on pp. 39, 49).

[34] Henry Corrigan-Gibbs, David Isaac Wolinsky, and Bryan Ford. “Proactively Accountable
Anonymous Messaging in Verdict”. In: 22nd USENIX Security Symposium (USENIX Security
13). Washington, D.C.: USENIX Association, Aug. 2013, pp. 147–162. isbn: 978-1-931971-03-
4. url: https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/corrigan-gibbs (cit. on p. 50).

[35] M. Crispin. RFC3501 INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1. IETF, 2003.
url: http://tools.ietf.org/pdf/rfc3501.pdf (cit. on p. A56).

[36] George Danezis, Claudia Diaz, Emilia Käsper, and Carmela Troncoso. “The Wisdom of Crowds:
Attacks and Optimal Constructions”. In: Proceedings of the 14th European Symposium on
Research in Computer Security (ESORICS 2009), Saint-Malo, France. Ed. by Michael Backes and
Peng Ning. Vol. 5789. Lecture Notes in Computer Science. Springer, Sept. 2009, pp. 406–423.
isbn: 978-3-642-04443-4. url: http://homes.esat.kuleuven.be/~ekasper/
papers/crowds.pdf (cit. on p. 38).

[37] Norman Danner, Sam DeFabbia-Kane, Danny Krizanc, and Marc Liberatore. “Effectiveness
and detection of denial of service attacks in Tor”. In: Transactions on Information and System
Security 15.3 (2012), 11:1–11:25. doi: 10.1145/2382448.2382449. url: http://
arxiv.org/pdf/1110.5395v3.pdf (cit. on p. 43).

[38] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. “Non-interactive zero-knowledge
proof systems”. In: Conference on the Theory and Application of Cryptographic Techniques.
Springer. 1987, pp. 52–72. url: https://link.springer.com/content/pdf/
10.1007/3-540-48184-2_5.pdf (cit. on p. 14).

[39] Roger Dingledine and Nick Mathewson. Tor Protocol Specification. url: https://gitweb.
torproject.org/torspec.git/tree/tor-spec.txt (cit. on p. 42).

[40] ISO DIS. “8824: Specification of Abstract Syntax Notation One (ASN. I)”. In: Basic Encoding
Rules (2015) (cit. on p. 88).

https://doi.org/10.1515/popets-2017-0007
https://www.degruyter.com/downloadpdf/j/popets.2017.2017.issue-1/popets-2017-0007/popets-2017-0007.pdf
https://www.degruyter.com/downloadpdf/j/popets.2017.2017.issue-1/popets-2017-0007/popets-2017-0007.pdf
https://www.degruyter.com/downloadpdf/j/popets.2017.2017.issue-1/popets-2017-0007/popets-2017-0007.pdf
http://www.wisdom.weizmann.ac.il/~oded/PSX/pir2.pdf
http://www.wisdom.weizmann.ac.il/~oded/PSX/pir2.pdf
https://freenetproject.org/
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://apps.nsa.gov/iaarchive/programs/iad-initiatives/cnsa-suite.cfm
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7163034
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7163034
https://doi.org/10.1145/1866307.1866346
http://doi.acm.org/10.1145/1866307.1866346
http://doi.acm.org/10.1145/1866307.1866346
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/corrigan-gibbs
http://tools.ietf.org/pdf/rfc3501.pdf
http://homes.esat.kuleuven.be/~ekasper/papers/crowds.pdf
http://homes.esat.kuleuven.be/~ekasper/papers/crowds.pdf
https://doi.org/10.1145/2382448.2382449
http://arxiv.org/pdf/1110.5395v3.pdf
http://arxiv.org/pdf/1110.5395v3.pdf
https://link.springer.com/content/pdf/10.1007/3-540-48184-2_5.pdf
https://link.springer.com/content/pdf/10.1007/3-540-48184-2_5.pdf
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt

A64 APPENDIX B. GLOSSARY

[41] Viktor Dukhovni and Wes Hardaker. RFC7672: SMTP Security via Opportunistic DNS-Based
Authentication of Named Entities (DANE) Transport Layer Security (TLS). RFC 7672. Oct. 2015.
doi: 10.17487/RFC7672. url: https://rfc-editor.org/rfc/rfc7672.
txt (cit. on p. 116).

[42] Lisa M. Dusseault. HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV).
RFC 4918. June 2007. doi: 10.17487/RFC4918. url: https://rfc-editor.org/
rfc/rfc4918.txt (cit. on p. 96).

[43] Morris Dworkin. Recommendation for block cipher modes of operation. methods and techniques.
Tech. rep. DTIC Document, 2001 (cit. on pp. 21, 91).

[44] André Egners, Dominic Gatzen, Andriy Panchenko, and Ulrike Meyer. “Introducing SOR:
SSH-based onion routing”. In: Advanced Information Networking and Applications Workshops
(WAINA), 2012 26th International Conference on. IEEE. IEEE, Mar. 2012, pp. 280–286. doi: 10.
1109/waina.2012.89. url: https://www.researchgate.net/profile/
Andre _ Egners / publication / 237007773 _ Introducing _ SOR _
SSH - based _ onion _ routing / links / 548805e90cf2ef34478ed724 /
Introducing-SOR-SSH-based-onion-routing.pdf (cit. on p. 45).

[45] M. Elkins. RFC2015 MIME Security with Pretty Good Privacy (PGP). IETF, 1996. url: http:
//tools.ietf.org/pdf/rfc2015.pdf (cit. on pp. 4, 67).

[46] Email Client Market Share. 2014. url: http://emailclientmarketshare.com/
(cit. on p. 34).

[47] Nathan Evans, Roger Dingledine, and Christian Grothoff. “A Practical Congestion Attack on
Tor Using Long Paths”. In: Proceedings of the 18th USENIX Security Symposium. Aug. 2009. url:
http://freehaven.net/anonbib/papers/congestion-longpaths.
pdf (cit. on p. 43).

[48] Fact Sheet Suite B Cryptography. 2008. url: http://www.nsa.gov/ia/industry/
crypto_suite_b.cfm (cit. on p. 19).

[49] C Feather. Network News Transfer Protocol (NNTP). IETF. Oct. 2006. url: https://www.
rfc-editor.org/rfc/pdfrfc/rfc3977.txt.pdf (cit. on p. 96).

[50] Hannes Federrath. “Das AN.ON-System: Starke Anonymität und Unbeobachtbarkeit im
Internet”. In: Anonymität im Internet. Springer, 2003, pp. 172–178 (cit. on p. 45).

[51] Paul Feldman. “A practical scheme for non-interactive verifiable secret sharing”. In: Foun-
dations of Computer Science, 1987., 28th Annual Symposium on. IEEE. 1987, pp. 427–438.
url: https://www.cs.umd.edu/~gasarch/TOPICS/secretsharing/
feldmanVSS.pdf (cit. on p. 19).

[52] Jessica Fidrich, Miroslav Goljan, and Dorin Hogea. “Steganalysis of JPEG Images: Breaking the
F5 Algorithm”. In: International Workshop on Information Hiding. Springer. 2002, pp. 310–323.
url: http://www.ws.binghamton.edu/fridrich/research/f5.pdf
(cit. on p. 106).

[53] Hal Finney, Lutz Donnerhacke, Jon Callas, Rodney L. Thayer, and David Shaw. OpenPGP
Message Format. RFC 4880. Nov. 2007. doi: 10.17487/RFC4880. url: https://rfc-
editor.org/rfc/rfc4880.txt (cit. on p. 35).

[54] N. Freed and N. Borenstein. RFC2045 Multipurpose Internet Mail Extensions; (MIME) Part One:
Format of Internet Message Bodies. IETF, 1996. url: http://tools.ietf.org/pdf/
rfc2045.pdf (cit. on pp. 4, 99).

[55] N. Freed and N. Borenstein. RFC2046 Multipurpose Internet Mail Extensions; (MIME) Part Two:
Media Types. IETF, 1996. url: http://tools.ietf.org/pdf/rfc2046.pdf
(cit. on p. 99).

https://doi.org/10.17487/RFC7672
https://rfc-editor.org/rfc/rfc7672.txt
https://rfc-editor.org/rfc/rfc7672.txt
https://doi.org/10.17487/RFC4918
https://rfc-editor.org/rfc/rfc4918.txt
https://rfc-editor.org/rfc/rfc4918.txt
https://doi.org/10.1109/waina.2012.89
https://doi.org/10.1109/waina.2012.89
https://www.researchgate.net/profile/Andre_Egners/publication/237007773_Introducing_SOR_SSH-based_onion_routing/links/548805e90cf2ef34478ed724/Introducing-SOR-SSH-based-onion-routing.pdf
https://www.researchgate.net/profile/Andre_Egners/publication/237007773_Introducing_SOR_SSH-based_onion_routing/links/548805e90cf2ef34478ed724/Introducing-SOR-SSH-based-onion-routing.pdf
https://www.researchgate.net/profile/Andre_Egners/publication/237007773_Introducing_SOR_SSH-based_onion_routing/links/548805e90cf2ef34478ed724/Introducing-SOR-SSH-based-onion-routing.pdf
https://www.researchgate.net/profile/Andre_Egners/publication/237007773_Introducing_SOR_SSH-based_onion_routing/links/548805e90cf2ef34478ed724/Introducing-SOR-SSH-based-onion-routing.pdf
http://tools.ietf.org/pdf/rfc2015.pdf
http://tools.ietf.org/pdf/rfc2015.pdf
http://emailclientmarketshare.com/
http://freehaven.net/anonbib/papers/congestion-longpaths.pdf
http://freehaven.net/anonbib/papers/congestion-longpaths.pdf
http://www.nsa.gov/ia/industry/crypto_suite_b.cfm
http://www.nsa.gov/ia/industry/crypto_suite_b.cfm
https://www.rfc-editor.org/rfc/pdfrfc/rfc3977.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc3977.txt.pdf
https://www.cs.umd.edu/~gasarch/TOPICS/secretsharing/feldmanVSS.pdf
https://www.cs.umd.edu/~gasarch/TOPICS/secretsharing/feldmanVSS.pdf
http://www.ws.binghamton.edu/fridrich/research/f5.pdf
https://doi.org/10.17487/RFC4880
https://rfc-editor.org/rfc/rfc4880.txt
https://rfc-editor.org/rfc/rfc4880.txt
http://tools.ietf.org/pdf/rfc2045.pdf
http://tools.ietf.org/pdf/rfc2045.pdf
http://tools.ietf.org/pdf/rfc2046.pdf

A65

[56] Michael J. Freedman and Robert Morris. “Tarzan: A Peer-to-Peer Anonymizing Network Layer”.
In: Proceedings of the 9th ACM Conference on Computer and Communications Security (CCS
2002). Washington, DC, Nov. 2002. url: http://pdos.lcs.mit.edu/tarzan/
docs/tarzan-ccs02.pdf (cit. on p. 49).

[57] FREEDOMON THE NET 2020. Dec. 2020. url: https://freedomhouse.org/sites/
default/files/2020-10/10122020_FOTN2020_Complete_Report_
FINAL.pdf (cit. on p. 3).

[58] Jessica Fridrich, Tomav Pevny, and Jan Kodovsky. “Statistically undetectable jpeg steganog-
raphy: dead ends challenges, and opportunities”. In: Proceedings of the 9th workshop on
Multimedia & security. 2007, pp. 3–14. url: https://dl.acm.org/doi/pdf/
10 . 1145 / 1288869 . 1288872 ? casa _ token = XajiDUEdBf4AAAAA :
Bv1tEz785TUYLzJaCM _ T - 1suexnqfktng90KxZeindGFUow _
rrBe5TDOe0CfuiDkc4-127FJa6F- (cit. on pp. 106, 148).

[59] Simson Garfinkel. PGP: Pretty Good Privacy. Encryption for everyone. O’Reilly/International
Thomson Verlag, 1996. isbn: 3-930673-30-4 (cit. on p. 67).

[60] R. Gellens and J. Klensin. RFC4409 Message Submission for Mail. IETF, 2006. url: http:
//tools.ietf.org/pdf/rfc4409.pdf (cit. on p. 33).

[61] Niv Gilboa and Yuval Ishai. “Distributed point functions and their applications”. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques. Springer.
2014, pp. 640–658. url: http://www.bgu.ac.il/~gilboan/publications/
dpfcameraready5.pdf (cit. on p. 48).

[62] Sharad Goel, Mark Robson, Milo Polte, and Emin Gun Sirer. Herbivore: A Scalable and Efficient
Protocol for Anonymous Communication. Tech. rep. 2003-1890. Ithaca, NY: Cornell Univer-
sity, Feb. 2003. url: http://www.cs.cornell.edu/People/egs/papers/
herbivore-tr.pdf (cit. on pp. 39, 49).

[63] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity of interactive
proof systems”. In: SIAM Journal on computing 18.1 (1989), pp. 186–208. url: https://
core.ac.uk/download/pdf/194164868.pdf (cit. on p. 14).

[64] Philippe Golle and Ari Juels. “Dining Cryptographers Revisited”. In: Proceedings of Eurocrypt
2004. May 2004. url: http://crypto.stanford.edu/~pgolle/papers/nim.
pdf (cit. on p. 39).

[65] Andy Greenberg. Leaked NSA Doc Says It Can Collect And Keep Your Encrypted Data As
Long As It Takes To Crack It. June 2013. url: https://www.forbes.com/sites/
andygreenberg / 2013 / 06 / 20 / leaked - nsa - doc - says - it - can -
collect-and-keep-your-encrypted-data-as-long-as-it-takes-
to-crack-it/#5edf34edb07d (cit. on p. 3).

[66] Ceki Gülcü and Gene Tsudik. “Mixing E-mail With Babel”. In: Proceedings of the Network
and Distributed Security Symposium - NDSS ’96. IEEE, Feb. 1996, pp. 2–16. url: http://
citeseer.nj.nec.com/2254.html (cit. on p. 41).

[67] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi, and Michael
Walfish. “Scalable and private media consumption with Popcorn”. In: 13th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 16). 2016, pp. 91–107. url:
https://www.usenix.org/system/files/conference/nsdi16/
nsdi16-paper-gupta-trinabh.pdf (cit. on p. 39).

[68] Rolf Haenni, Eric Dubuis, and Ulrich Ultes-Nitsche. “Research on e-voting technologies”. In:
Bern University of Applied Sciences, Tech. Rep 5 (2008) (cit. on p. 4).

[69] Shai Halevi and Phillip Rogaway. “A Tweakable Enciphering Mode”. In: Advances in Cryptology
- CRYPTO 2003. Ed. by Dan Boneh. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 482–
499. isbn: 978-3-540-45146-4. doi: 10.1007/978-3-540-45146-4_28 (cit. on pp. 22,
92).

http://pdos.lcs.mit.edu/tarzan/docs/tarzan-ccs02.pdf
http://pdos.lcs.mit.edu/tarzan/docs/tarzan-ccs02.pdf
https://freedomhouse.org/sites/default/files/2020-10/10122020_FOTN2020_Complete_Report_FINAL.pdf
https://freedomhouse.org/sites/default/files/2020-10/10122020_FOTN2020_Complete_Report_FINAL.pdf
https://freedomhouse.org/sites/default/files/2020-10/10122020_FOTN2020_Complete_Report_FINAL.pdf
https://dl.acm.org/doi/pdf/10.1145/1288869.1288872?casa_token=XajiDUEdBf4AAAAA:Bv1tEz785TUYLzJaCM_T-1suexnqfktng90KxZeindGFUow_rrBe5TDOe0CfuiDkc4-127FJa6F-
https://dl.acm.org/doi/pdf/10.1145/1288869.1288872?casa_token=XajiDUEdBf4AAAAA:Bv1tEz785TUYLzJaCM_T-1suexnqfktng90KxZeindGFUow_rrBe5TDOe0CfuiDkc4-127FJa6F-
https://dl.acm.org/doi/pdf/10.1145/1288869.1288872?casa_token=XajiDUEdBf4AAAAA:Bv1tEz785TUYLzJaCM_T-1suexnqfktng90KxZeindGFUow_rrBe5TDOe0CfuiDkc4-127FJa6F-
https://dl.acm.org/doi/pdf/10.1145/1288869.1288872?casa_token=XajiDUEdBf4AAAAA:Bv1tEz785TUYLzJaCM_T-1suexnqfktng90KxZeindGFUow_rrBe5TDOe0CfuiDkc4-127FJa6F-
http://tools.ietf.org/pdf/rfc4409.pdf
http://tools.ietf.org/pdf/rfc4409.pdf
http://www.bgu.ac.il/~gilboan/publications/dpfcameraready5.pdf
http://www.bgu.ac.il/~gilboan/publications/dpfcameraready5.pdf
http://www.cs.cornell.edu/People/egs/papers/herbivore-tr.pdf
http://www.cs.cornell.edu/People/egs/papers/herbivore-tr.pdf
https://core.ac.uk/download/pdf/194164868.pdf
https://core.ac.uk/download/pdf/194164868.pdf
http://crypto.stanford.edu/~pgolle/papers/nim.pdf
http://crypto.stanford.edu/~pgolle/papers/nim.pdf
https://www.forbes.com/sites/andygreenberg/2013/06/20/leaked-nsa-doc-says-it-can-collect-and-keep-your-encrypted-data-as-long-as-it-takes-to-crack-it/#5edf34edb07d
https://www.forbes.com/sites/andygreenberg/2013/06/20/leaked-nsa-doc-says-it-can-collect-and-keep-your-encrypted-data-as-long-as-it-takes-to-crack-it/#5edf34edb07d
https://www.forbes.com/sites/andygreenberg/2013/06/20/leaked-nsa-doc-says-it-can-collect-and-keep-your-encrypted-data-as-long-as-it-takes-to-crack-it/#5edf34edb07d
https://www.forbes.com/sites/andygreenberg/2013/06/20/leaked-nsa-doc-says-it-can-collect-and-keep-your-encrypted-data-as-long-as-it-takes-to-crack-it/#5edf34edb07d
http://citeseer.nj.nec.com/2254.html
http://citeseer.nj.nec.com/2254.html
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-gupta-trinabh.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-gupta-trinabh.pdf
https://doi.org/10.1007/978-3-540-45146-4_28

A66 APPENDIX B. GLOSSARY

[70] Michael Herrmann and Christian Grothoff. “Privacy Implications of Performance-Based Peer
Selection by Onion Routers: A Real-World Case Study using I2P”. In: Proceedings of the 11th
Privacy Enhancing Technologies Symposium (PETS 2011). Waterloo, Canada, July 2011. url:
http://freehaven.net/anonbib/papers/pets2011/p9-herrmann.
pdf (cit. on p. 44).

[71] P. Hoffman and P. McManus. DNS Queries over HTTPS (DoH). IETF. Oct. 2018. url: https:
//tools.ietf.org/html/rfc8484 (cit. on p. 25).

[72] Paul E. Hoffman and Jakob Schlyter. RFC6698: The DNS-Based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698. Aug. 2012. doi:
10.17487/RFC6698. url: https://rfc-editor.org/rfc/rfc6698.txt
(cit. on p. 116).

[73] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. “NTRU: A ring-based public key cryp-
tosystem”. In: International Algorithmic Number Theory Symposium. More information about
recent research at https://ntru.com. Springer. 1998, pp. 267–288. url: https://assets.
onboardsecurity.com/static/downloads/NTRU/resources/ANTS97.
pdf (cit. on p. 19).

[74] Vojtěch Holub, Jessica Fridrich, and Tomáš Denemark. “Universal distortion function for
steganography in an arbitrary domain”. In: EURASIP Journal on Information Security 2014.1
(2014), p. 1 (cit. on p. 148).

[75] Morteza Darvish Morshedi Hosseini and Mojtaba Mahdavi. “Modification in spatial, extraction
from transform: A new approach for JPEG steganography”. In: 2015 12th International Iranian
Society of Cryptology Conference on Information Security and Cryptology (ISCISC). IEEE. 2015,
pp. 134–140 (cit. on p. 106).

[76] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. “The Parrot is Dead: Observing
Unobservable Network Communications”. In: Proceedings of the 2013 IEEE Symposium on
Security and Privacy. May 2013. url: http://www.cs.utexas.edu/~amir/
papers/parrot.pdf (cit. on pp. 16, 74, 147, 148).

[77] Aaron Johnson. Design and analysis of efficient anonymous-communication protocols. Yale
University, 2009. url: https://ohmygodel.com/publications/ajohnson-
thesis-v5.pdf (cit. on p. 43).

[78] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. “Users Get Routed:
Traffic Correlation on Tor by Realistic Adversaries”. In: Proceedings of the 20th ACM conference
on Computer and Communications Security (CCS 2013). Nov. 2013. url: http://www.
ohmygodel.com/publications/usersrouted-ccs13.pdf (cit. on p. 43).

[79] Justin Karneges and Peter Saint-Andre. XEP-0047: In-band bytestreams. 2003. url: https:
//xmpp.org/extensions/xep-0047.html (cit. on p. 102).

[80] S. Kaur, S. Bansal, and R. K. Bansal. “Steganography and classification of image steganography
techniques”. In: 2014 International Conference on Computing for Sustainable Global Development
(INDIACom). Mar. 2014, pp. 870–875. doi: 10.1109/IndiaCom.2014.6828087. url:
https://ieeexplore.ieee.org/abstract/document/6828087 (cit. on
p. 24).

[81] Juhoon Kim, Fabian Schneider, Bernhard Ager, and Anja Feldmann. “Today’s usenet usage:
NNTP traffic characterization”. In: 2010 INFOCOM IEEE Conference on Computer Commu-
nications Workshops. IEEE. 2010, pp. 1–6. doi: 10.1109/INFCOMW.2010.5466665.
url: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
5466665 (cit. on p. 96).

[82] John Kindervag. “No more chewy centers: Introducing the zero trust model of information secu-
rity”. In: Forrester Research (Sept. 2010). url: https://media.paloaltonetworks.
com/documents/Forrester-No-More-Chewy-Centers.pdf (cit. on p. 16).

http://freehaven.net/anonbib/papers/pets2011/p9-herrmann.pdf
http://freehaven.net/anonbib/papers/pets2011/p9-herrmann.pdf
https://tools.ietf.org/html/rfc8484
https://tools.ietf.org/html/rfc8484
https://doi.org/10.17487/RFC6698
https://rfc-editor.org/rfc/rfc6698.txt
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/ANTS97.pdf
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/ANTS97.pdf
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/ANTS97.pdf
http://www.cs.utexas.edu/~amir/papers/parrot.pdf
http://www.cs.utexas.edu/~amir/papers/parrot.pdf
https://ohmygodel.com/publications/ajohnson-thesis-v5.pdf
https://ohmygodel.com/publications/ajohnson-thesis-v5.pdf
http://www.ohmygodel.com/publications/usersrouted-ccs13.pdf
http://www.ohmygodel.com/publications/usersrouted-ccs13.pdf
https://xmpp.org/extensions/xep-0047.html
https://xmpp.org/extensions/xep-0047.html
https://doi.org/10.1109/IndiaCom.2014.6828087
https://ieeexplore.ieee.org/abstract/document/6828087
https://doi.org/10.1109/INFCOMW.2010.5466665
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5466665
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5466665
https://media.paloaltonetworks.com/documents/Forrester-No-More-Chewy-Centers.pdf
https://media.paloaltonetworks.com/documents/Forrester-No-More-Chewy-Centers.pdf

A67

[83] J. Klensin. RFC5321 Simple Mail Transfer Protocol. IETF, 2008. url: http://tools.ietf.
org/pdf/rfc5321.pdf (cit. on pp. 31, 99, 115, A59).

[84] Neal Koblitz, Alfred Menezes, and Scott Vanstone. Guide to Elliptic Curve Cryptography. 2004.
url: http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-
1987-0866109-5/S0025-5718-1987-0866109-5.pdf (cit. on p. 18).

[85] Jan Kodovsky, Tomas Pevny, and Jessica Fridrich. “Modern steganalysis can detect YASS”. In:
Media Forensics and Security II. Vol. 7541. International Society for Optics and Photonics. 2010,
p. 754102. url: http://ia.binghamton.edu/publication/FridrichPDF/
yass_attack.pdf (cit. on p. 25).

[86] Albert Kwon, Henry Corrigan-Gibbs, Srinivas Devadas, and Bryan Ford. “Atom: Scalable
anonymity resistant to traffic analysis”. In: CoRR abs/1612.07841 (2016). url: https://www.
researchgate.net/profile/Bryan_Ford/publication/311900860_
Atom _ Scalable _ Anonymity _ Resistant _ to _ Traffic _ Analysis /
links / 58c918ddaca2723ab18138c5 / Atom - Scalable - Anonymity -
Resistant-to-Traffic-Analysis.pdf (cit. on pp. 50, 174).

[87] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. “Riffle: An efficient communica-
tion system with strong anonymity”. In: Proceedings on Privacy Enhancing Technologies 2016.2
(2016), pp. 115–134. url: https://content.sciendo.com/downloadpdf/
journals/popets/2016/2/article-p115.pdf (cit. on pp. 47, 48).

[88] Butler W. Lampson. A Note on the Confinement Problem. 1973. url: http://faculty.
kfupm.edu.sa/COE/mimam/Papers/73%20A%20Note%20on%20the%
20Confinement%20Problem.pdf (cit. on p. 24).

[89] David Lazar, Yossi Gilad, and Nickolai Zeldovich. “Karaoke: Distributed private messaging
immune to passive traffic analysis”. In: 13th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18). 2018, pp. 711–725. url: https://www.usenix.org/
system/files/osdi18-lazar.pdf (cit. on p. 47).

[90] Arjen K. Lenstra. key length – contribution to the handbook of information security. 2004.
url: https://infoscience.epfl.ch/record/164539/files/NPDF-
32.pdf (cit. on p. 19).

[91] Moritz Leuenberger and Josi Meier. Vorkommnisse im EJPD Bericht der Parlamentarischen
Untersuchungskommission(PUK). Bundesblatt 1989-55. Nov. 1989. url: https://www.
parlament.ch/centers/documents/de/ed-berichte-puk-ejpd.pdf
(cit. on p. 3).

[92] Brian Neil Levine and Clay Shields. “Hordes — A Multicast Based Protocol for Anonymity”. In:
Journal of Computer Security 10.3 (2002), pp. 213–240. url: http://prisms.cs.umass.
edu/brian/pubs/brian.hordes.jcs01.pdf (cit. on p. 50).

[93] Peter H. Lewis. Behind an Internet Message Service’s Closure. New York Times. Sept. 1996.
url: https://www.nytimes.com/1996/09/06/business/behind-an-
internet-message-service-s-close.html (cit. on pp. 41, 60).

[94] Bin Li, Jiwu Huang, and Yun Qing Shi. “Steganalysis of YASS”. In: IEEE Transactions on
Information Forensics and Security 4.3 (2009), pp. 369–382. url: https://ieeexplore.
ieee.org/stamp/stamp.jsp?arnumber=5153278 (cit. on p. 25).

[95] Bin Li, Ming Wang, Jiwu Huang, and Xiaolong Li. “A new cost function for spatial image
steganography”. In: 2014 IEEE International Conference on Image Processing (ICIP). IEEE. 2014,
pp. 4206–4210 (cit. on p. 148).

http://tools.ietf.org/pdf/rfc5321.pdf
http://tools.ietf.org/pdf/rfc5321.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
http://ia.binghamton.edu/publication/FridrichPDF/yass_attack.pdf
http://ia.binghamton.edu/publication/FridrichPDF/yass_attack.pdf
https://www.researchgate.net/profile/Bryan_Ford/publication/311900860_Atom_Scalable_Anonymity_Resistant_to_Traffic_Analysis/links/58c918ddaca2723ab18138c5/Atom-Scalable-Anonymity-Resistant-to-Traffic-Analysis.pdf
https://www.researchgate.net/profile/Bryan_Ford/publication/311900860_Atom_Scalable_Anonymity_Resistant_to_Traffic_Analysis/links/58c918ddaca2723ab18138c5/Atom-Scalable-Anonymity-Resistant-to-Traffic-Analysis.pdf
https://www.researchgate.net/profile/Bryan_Ford/publication/311900860_Atom_Scalable_Anonymity_Resistant_to_Traffic_Analysis/links/58c918ddaca2723ab18138c5/Atom-Scalable-Anonymity-Resistant-to-Traffic-Analysis.pdf
https://www.researchgate.net/profile/Bryan_Ford/publication/311900860_Atom_Scalable_Anonymity_Resistant_to_Traffic_Analysis/links/58c918ddaca2723ab18138c5/Atom-Scalable-Anonymity-Resistant-to-Traffic-Analysis.pdf
https://www.researchgate.net/profile/Bryan_Ford/publication/311900860_Atom_Scalable_Anonymity_Resistant_to_Traffic_Analysis/links/58c918ddaca2723ab18138c5/Atom-Scalable-Anonymity-Resistant-to-Traffic-Analysis.pdf
https://content.sciendo.com/downloadpdf/journals/popets/2016/2/article-p115.pdf
https://content.sciendo.com/downloadpdf/journals/popets/2016/2/article-p115.pdf
http://faculty.kfupm.edu.sa/COE/mimam/Papers/73%20A%20Note%20on%20the%20Confinement%20Problem.pdf
http://faculty.kfupm.edu.sa/COE/mimam/Papers/73%20A%20Note%20on%20the%20Confinement%20Problem.pdf
http://faculty.kfupm.edu.sa/COE/mimam/Papers/73%20A%20Note%20on%20the%20Confinement%20Problem.pdf
https://www.usenix.org/system/files/osdi18-lazar.pdf
https://www.usenix.org/system/files/osdi18-lazar.pdf
https://infoscience.epfl.ch/record/164539/files/NPDF-32.pdf
https://infoscience.epfl.ch/record/164539/files/NPDF-32.pdf
https://www.parlament.ch/centers/documents/de/ed-berichte-puk-ejpd.pdf
https://www.parlament.ch/centers/documents/de/ed-berichte-puk-ejpd.pdf
http://prisms.cs.umass.edu/brian/pubs/brian.hordes.jcs01.pdf
http://prisms.cs.umass.edu/brian/pubs/brian.hordes.jcs01.pdf
https://www.nytimes.com/1996/09/06/business/behind-an-internet-message-service-s-close.html
https://www.nytimes.com/1996/09/06/business/behind-an-internet-message-service-s-close.html
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5153278
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5153278

A68 APPENDIX B. GLOSSARY

[96] Helger Lipmaa. “First CPIR protocol with data-dependent computation”. In: Interna-
tional Conference on Information Security and Cryptology. Springer. 2009, pp. 193–210.
url: https : / / www . researchgate . net / profile / Helger _ Lipmaa /
publication / 226120577 _ First _ CPIR _ Protocol _ with _ Data -
Dependent_Computation/links/09e4150ba79602c837000000/First-
CPIR-Protocol-with-Data-Dependent-Computation.pdf (cit. on p. 39).

[97] Helger Lipmaa, Phillip Rogaway, and David Wagner. “CTR-mode encryption”. In: First NIST
Workshop on Modes of Operation. 2000 (cit. on pp. 21, 91).

[98] Scott Ludwig, Joe Beda, Peter Saint-Andre, Robert McQueen, Sean Egan, and Joe Hildebrand.
XEP-0166: Jingle. 2009. url: https://xmpp.org/extensions/xep-0166.html
(cit. on p. 102).

[99] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan Venkita-
subramaniam. “l-diversity: Privacy beyond k-anonymity”. In: ACM Transactions on Knowledge
Discovery from Data (TKDD) 1.1 (2007), p. 3. url: http://www.cs.cornell.edu/
~vmuthu/research/ldiversity.pdf (cit. on p. 14).

[100] George Marsaglia et al. “Xorshift rngs”. In: Journal of Statistical Software 8.14 (2003), pp. 1–6
(cit. on p. 94).

[101] Luther Martin. “XTS: A Mode of AES for Encrypting Hard Disks”. In: IEEE Security & Privacy
Magazine 8.3 (May 2010), pp. 68–69. doi: 10.1109/msp.2010.111. url: https:
//ieeexplore.ieee.org/iel5/8013/5470945/05470958.pdf (cit. on
pp. 22, 92).

[102] Larry Masinter. RFC2397 The" data" URL scheme. 1998. url:https://www.rfc-editor.
org/info/rfc2397 (cit. on p. 102).

[103] Mitsuru Matsui, S Moriai, and J Nakajima. “RFC3713: A Description of the Camellia Encryption
Algorithm”. In: (2004) (cit. on p. 18).

[104] Robert J. McEliece and Dilip V. Sarwate. “On sharing secrets and Reed-Solomon codes”. In:
Communications of the ACM 24.9 (1981), pp. 583–584. url: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.80.2829&rep=rep1&type=
pdf (cit. on pp. 79, 152).

[105] David McGrew and John Viega. “The Galois/counter mode of operation (GCM)”. In: Submission
to NIST. http://csrc. nist. gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec. pdf (2004)
(cit. on pp. 21, 91).

[106] David A McGrew and John Viega. “The security and performance of the Galois/Counter
Mode (GCM) of operation”. In: International Conference on Cryptology in India. Springer. 2004,
pp. 343–355 (cit. on pp. 22, 92).

[107] Messaging Application Programming Interface (MAPI) Extensions for HTTP. Microsoft Corpo-
ration, 2018. url: https://interoperability.blob.core.windows.net/
files/MS-OXCMAPIHTTP/%5BMS-OXCMAPIHTTP%5D.pdf (cit. on p. A57).

[108] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. In:Advances in Cryptology—CRYPTO
’85 Proceedings. Ed. by Hugh C. Williams. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986,
pp. 417–426. isbn: 978-3-540-39799-1. doi: 10.1007/3- 540- 39799- X_31. url:
http://dx.doi.org/10.1007/3-540-39799-X_31 (cit. on p. 18).

[109] Kazuhiko Minematsu, Stefan Lucks, Hiraku Morita, and Tetsu Iwata. “Attacks and security
proofs of EAX-prime”. In: International Workshop on Fast Software Encryption. Springer. 2013,
pp. 327–347. url: http://eprint.iacr.org/2012/018.pdf (cit. on pp. 21, 91).

https://www.researchgate.net/profile/Helger_Lipmaa/publication/226120577_First_CPIR_Protocol_with_Data-Dependent_Computation/links/09e4150ba79602c837000000/First-CPIR-Protocol-with-Data-Dependent-Computation.pdf
https://www.researchgate.net/profile/Helger_Lipmaa/publication/226120577_First_CPIR_Protocol_with_Data-Dependent_Computation/links/09e4150ba79602c837000000/First-CPIR-Protocol-with-Data-Dependent-Computation.pdf
https://www.researchgate.net/profile/Helger_Lipmaa/publication/226120577_First_CPIR_Protocol_with_Data-Dependent_Computation/links/09e4150ba79602c837000000/First-CPIR-Protocol-with-Data-Dependent-Computation.pdf
https://www.researchgate.net/profile/Helger_Lipmaa/publication/226120577_First_CPIR_Protocol_with_Data-Dependent_Computation/links/09e4150ba79602c837000000/First-CPIR-Protocol-with-Data-Dependent-Computation.pdf
https://xmpp.org/extensions/xep-0166.html
http://www.cs.cornell.edu/~vmuthu/research/ldiversity.pdf
http://www.cs.cornell.edu/~vmuthu/research/ldiversity.pdf
https://doi.org/10.1109/msp.2010.111
https://ieeexplore.ieee.org/iel5/8013/5470945/05470958.pdf
https://ieeexplore.ieee.org/iel5/8013/5470945/05470958.pdf
https://www.rfc-editor.org/info/rfc2397
https://www.rfc-editor.org/info/rfc2397
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.2829&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.2829&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.2829&rep=rep1&type=pdf
https://interoperability.blob.core.windows.net/files/MS-OXCMAPIHTTP/%5BMS-OXCMAPIHTTP%5D.pdf
https://interoperability.blob.core.windows.net/files/MS-OXCMAPIHTTP/%5BMS-OXCMAPIHTTP%5D.pdf
https://doi.org/10.1007/3-540-39799-X_31
http://dx.doi.org/10.1007/3-540-39799-X_31
http://eprint.iacr.org/2012/018.pdf

A69

[110] Alan Mislove, Gaurav Oberoi, Ansley Post, Charles Reis, Peter Druschel, and Dan S Wallach.
“AP3: Cooperative, decentralized anonymous communication”. In: Proceedings of the 11th
workshop on ACM SIGOPS European workshop. ACM. 2004, p. 30. url: http://www-dev.
ccs.neu.edu/home/amislove/publications/AP3-SIGOPSEW.pdf (cit.
on p. 45).

[111] Prateek Mittal and Nikita Borisov. “Information Leaks in Structured Peer-to-peer Anony-
mous Communication Systems”. In: Proceedings of the 15th ACM Conference on Computer
and Communications Security (CCS 2008). Ed. by Paul Syverson, Somesh Jha, and Xiaolan
Zhang. Alexandria, Virginia, USA: ACM Press, Oct. 2008, pp. 267–278. url: http://www.
hatswitch.org/~nikita/papers/information-leak.pdf (cit. on pp. 45,
49).

[112] Jerey Mogul, Larry M Masinter, Roy T. Fielding, Jim Gettys, Paul J. Leach, and Tim Berners-Lee.
RFC2616: Hypertext Transfer Protocol – HTTP/1.1. RFC 2616. June 1999. doi: 10.17487/
rfc2616. url: https://rfc-editor.org/rfc/rfc2616.txt (cit. on p. 96).

[113] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian Goldberg.
“Skypemorph: Protocol obfuscation for tor bridges”. In: Proceedings of the 2012 ACM con-
ference on Computer and communications security. ACM. ACM Press, 2012, pp. 97–108. doi:
10.1145/2382196.2382210. url: http://www.cypherpunks.ca/~iang/
pubs/skypemorph-ccs.pdf (cit. on p. 63).

[114] J. P. Muñoz-Gea, J. Malgosa-Sanahuja, P. Manzanares-Lopez, J. C. Sanchez-Aarnoutse, and
J. Garcia-Haro. “A Low-Variance Random-Walk Procedure to Provide Anonymity in Overlay
Networks”. In: Computer Security - ESORICS 2008. Springer Berlin Heidelberg, 2008, pp. 238–
250. isbn: 978-3-540-88313-5. doi: 10.1007/978-3-540-88313-5_16 (cit. on p. 38).

[115] John G. Myers. Local Mail Transfer Protocol. RFC 2033. Oct. 1996. doi:10.17487/RFC2033.
url: https://rfc-editor.org/rfc/rfc2033.txt (cit. on p. A57).

[116] Arjun Nambiar and Matthew Wright. “Salsa: A Structured Approach to Large-Scale Anon-
ymity”. In: Proceedings of CCS 2006. Nov. 2006. url: http://ranger.uta.edu/
~mwright/papers/salsa-ccs06.pdf (cit. on p. 49).

[117] Alan Nicholson, Jan-Dirk Schmöcker, Michael Bell, and Yasunori Iida. “Assessing transport
reliability: malevolence and user knowledge”. In: The network reliability of transport: Proceed-
ings of the 1st international symposium on transportation network reliability (INSTR). Emer-
ald Group Publishing Limited. 2003, pp. 1–22. doi: 10.1108/9781786359544-001.
url: https://www.emerald.com/insight/content/doi/10.1108/
9781786359544-001/full/html (cit. on p. 62).

[118] Suresh Venkatasubramanian Ninghui Li Tiancheng Li. “t-Closeness: Privacy Beyond k-
Anonymity and l-Diversity”. In: (). url: http://www.cs.purdue.edu/homes/
li83/papers/icde_closeness.pdf (cit. on p. 14).

[119] NSA. XKeyscore presentation from 2008. Web and several newspapers (e.g., guardian). Three
slides have been redacted as they contained suposedly specific NSA operations. July 2013.
url: https://www.theguardian.com/world/interactive/2013/jul/
31/nsa-xkeyscore-program-full-presentation (cit. on p. 3).

[120] Lasse Øverlier and Paul Syverson. “Locating Hidden Servers”. In: Proceedings of the 2006
IEEE Symposium on Security and Privacy. IEEE CS, May 2006. url: http://tor-svn.
freehaven.net/anonbib/cache/hs-attack06.pdf (cit. on p. 43).

[121] Adrian Perrig, Pawel Szalachowski, Raphael M Reischuk, and Laurent Chuat. SCION: a secure
Internet architecture. Springer, 2017. url: https://www.scion-architecture.
net/pdf/SCION-book.pdf (cit. on p. 47).

[122] Saint-Andre Peter and Kaes Craig. XEP-0013: Flexible Offline Message Retrieval. 2005. url:
http://xmpp.org/extensions/xep-0013.html (cit. on p. 99).

http://www-dev.ccs.neu.edu/home/amislove/publications/AP3-SIGOPSEW.pdf
http://www-dev.ccs.neu.edu/home/amislove/publications/AP3-SIGOPSEW.pdf
http://www.hatswitch.org/~nikita/papers/information-leak.pdf
http://www.hatswitch.org/~nikita/papers/information-leak.pdf
https://doi.org/10.17487/rfc2616
https://doi.org/10.17487/rfc2616
https://rfc-editor.org/rfc/rfc2616.txt
https://doi.org/10.1145/2382196.2382210
http://www.cypherpunks.ca/~iang/pubs/skypemorph-ccs.pdf
http://www.cypherpunks.ca/~iang/pubs/skypemorph-ccs.pdf
https://doi.org/10.1007/978-3-540-88313-5_16
https://doi.org/10.17487/RFC2033
https://rfc-editor.org/rfc/rfc2033.txt
http://ranger.uta.edu/~mwright/papers/salsa-ccs06.pdf
http://ranger.uta.edu/~mwright/papers/salsa-ccs06.pdf
https://doi.org/10.1108/9781786359544-001
https://www.emerald.com/insight/content/doi/10.1108/9781786359544-001/full/html
https://www.emerald.com/insight/content/doi/10.1108/9781786359544-001/full/html
http://www.cs.purdue.edu/homes/li83/papers/icde_closeness.pdf
http://www.cs.purdue.edu/homes/li83/papers/icde_closeness.pdf
https://www.theguardian.com/world/interactive/2013/jul/31/nsa-xkeyscore-program-full-presentation
https://www.theguardian.com/world/interactive/2013/jul/31/nsa-xkeyscore-program-full-presentation
http://tor-svn.freehaven.net/anonbib/cache/hs-attack06.pdf
http://tor-svn.freehaven.net/anonbib/cache/hs-attack06.pdf
https://www.scion-architecture.net/pdf/SCION-book.pdf
https://www.scion-architecture.net/pdf/SCION-book.pdf
http://xmpp.org/extensions/xep-0013.html

A70 APPENDIX B. GLOSSARY

[123] Tomav Pevny, Tomav Filler, and Patrick Bas. “Using high-dimensional image models to
perform highly undetectable steganography”. In: International Workshop on Information Hiding.
Springer. 2010, pp. 161–177 (cit. on p. 148).

[124] Andreas Pfitzmann and Marit Hansen.A terminology for talking about privacy by data minimiza-
tion: Anonymity, Unlinkability, Undetectability, Unobservability, Pseudonymity, and Identity Man-
agement. V0.34. Aug. 2010. url: http://dud.inf.tu-dresden.de/literatur/
Anon%5C_Terminology%5C_v0.34.pdf (cit. on pp. 13, 60, A56, A57, A58, A59).

[125] Jon Postel and Joyce Reynolds. RFC 959: File transfer protocol. 1985. url: https://tools.
ietf.org/pdf/rfc959.pdf (cit. on p. 96).

[126] Tom Postmes, Russell Spears, Khaled Sakhel, and Daphne De Groot. “Social influence
in computer-mediated communication: The effects of anonymity on group behavior”. In:
Personality and Social Psychology Bulletin 27.10 (2001), pp. 1243–1254. doi: 10.1177/
01461672012710001. url: http://psp.sagepub.com/content/27/10/
1243.short (cit. on p. 186).

[127] B. Ramsdell. RFC3851 Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1
Message Specification. IETF, 2004. url: http://tools.ietf.org/pdf/rfc3851.
pdf (cit. on p. 34).

[128] Irving S Reed and Gustave Solomon. “Polynomial codes over certain finite fields”. In: Journal
of the society for industrial and applied mathematics 8.2 (June 1960), pp. 300–304. doi: 10.
1137/0108018. url: https://faculty.math.illinois.edu/~duursma/
CT/RS-1960.pdf (cit. on p. 65).

[129] Michael Reiter and Aviel Rubin. “Crowds: Anonymity for Web Transactions”. In: ACM Transac-
tions on Information and System Security 1.1 (June 1998). url: http://avirubin.com/
crowds.pdf (cit. on p. 38).

[130] Marc Rennhard and Bernhard Plattner. “Introducing MorphMix: Peer-to-Peer based Anony-
mous Internet Usage with Collusion Detection”. In: Proceedings of the Workshop on Pri-
vacy in the Electronic Society (WPES 2002). Washington, DC, USA, Nov. 2002. url: http:
//cecid.sourceforge.net/morphmix.pdf (cit. on p. 49).

[131] Marc Rennhard and Bernhard Plattner. “Practical Anonymity for the Masses with Mix-
Networks”. In: Proceedings of the IEEE 8th Intl. Workshop on Enterprise Security (WET ICE 2003).
Linz, Austria, June 2003. url: https://gnunet.org/sites/default/files/
RP03-1.pdf (cit. on p. 36).

[132] P. Resnick. RFC5322 Internet Message Format. IETF, 2008. url: http://tools.ietf.
org/pdf/rfc5322.pdf (cit. on pp. 99, 115).

[133] R. L. Rivest, A. Shamir, and L. Adleman. “a method for obtaining digital signatures and
public-key cryptosystems”. In: Communications of the ACM 21.2 (Feb. 1978), pp. 120–126. issn:
0001-0782. doi: 10.1145/359340.359342. url: http://doi.acm.org/10.
1145/359340.359342 (cit. on p. 18).

[134] Phillip Rogaway, Mihir Bellare, and John Black. “OCB: A block-cipher mode of operation for
efficient authenticated encryption”. In: ACM Transactions on Information and System Security
(TISSEC) 6.3 (2003), pp. 365–403 (cit. on pp. 21, 91).

[135] Phillip Rogaway and Ted Krovetz. The OCB Authenticated-Encryption Algorithm. Internet-
Draft draft-krovetz-ocb-04. Work in Progress. Internet Engineering Task Force, July 2012. url:
https://tools.ietf.org/html/draft-krovetz-ocb-04 (cit. on pp. 21,
91).

[136] J. P. Sain-Andre. RFC3923: End-to-End Signing and Object Encryption for the ExtensibleMessaging
and Presence Protocol (XMPP). IETF, 2004. url: http://tools.ietf.org/pdf/
rfc3923.pdf (cit. on pp. 35, 98).

http://dud.inf.tu-dresden.de/literatur/Anon%5C_Terminology%5C_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon%5C_Terminology%5C_v0.34.pdf
https://tools.ietf.org/pdf/rfc959.pdf
https://tools.ietf.org/pdf/rfc959.pdf
https://doi.org/10.1177/01461672012710001
https://doi.org/10.1177/01461672012710001
http://psp.sagepub.com/content/27/10/1243.short
http://psp.sagepub.com/content/27/10/1243.short
http://tools.ietf.org/pdf/rfc3851.pdf
http://tools.ietf.org/pdf/rfc3851.pdf
https://doi.org/10.1137/0108018
https://doi.org/10.1137/0108018
https://faculty.math.illinois.edu/~duursma/CT/RS-1960.pdf
https://faculty.math.illinois.edu/~duursma/CT/RS-1960.pdf
http://avirubin.com/crowds.pdf
http://avirubin.com/crowds.pdf
http://cecid.sourceforge.net/morphmix.pdf
http://cecid.sourceforge.net/morphmix.pdf
https://gnunet.org/sites/default/files/RP03-1.pdf
https://gnunet.org/sites/default/files/RP03-1.pdf
http://tools.ietf.org/pdf/rfc5322.pdf
http://tools.ietf.org/pdf/rfc5322.pdf
https://doi.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
https://tools.ietf.org/html/draft-krovetz-ocb-04
http://tools.ietf.org/pdf/rfc3923.pdf
http://tools.ietf.org/pdf/rfc3923.pdf

A71

[137] P. Saint-Andre. RFC3922: Mapping the Extensible Messaging and Presence Protocol (XMPP) to
Common Presence and Instant Messaging (CPIM). IETF, 2004. url: http://tools.ietf.
org/pdf/rfc3922.pdf (cit. on pp. 35, 98).

[138] P. Saint-Andre. RFC6120: Extensible Messaging and Presence Protocol (XMPP): Core. IETF, 2011.
url: http://tools.ietf.org/pdf/rfc6120.pdf (cit. on pp. 35, 98, 102, 115,
A60).

[139] P. Saint-Andre. RFC6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging
and Presence. IETF, 2011. url: http://tools.ietf.org/pdf/rfc6121.pdf
(cit. on pp. 35, 98, A60).

[140] Peter Saint-Andre. XEP-0135: File Sharing. 2004. url: https : / / xmpp . org /
extensions/xep-0135.html (cit. on p. 102).

[141] Peter Saint-Andre. XEP-0066: Out of Band Data. 2006. url: https://xmpp.org/
extensions/xep-0066.html (cit. on p. 102).

[142] Peter Saint-Andre and P Simerda. XEP-0231: Bits of binary. 2008. url: https://xmpp.
org/extensions/xep-0231.html (cit. on p. 102).

[143] Peter Saint-Andre and Lance Stout. XEP-0234: Jingle File Transfer. 2011. url: https://
xmpp.org/extensions/xep-0234.pdf (cit. on p. 102).

[144] Saad Saleh, Junaid Qadir, and Muhammad U Ilyas. “Shedding Light on the Dark Corners of
the Internet: A Survey of Tor Research”. In: Journal of Network and Computer Applications 114
(July 2018), pp. 1–28. doi: 10.1016/j.jnca.2018.04.002. url: https://www.
sciencedirect.com/science/article/pii/S1084804518301280 (cit.
on p. 43).

[145] Jody Sankey and Matthew Wright. “Dovetail: Stronger anonymity in next-generation internet
routing”. In: International Symposium on Privacy Enhancing Technologies Symposium. Springer.
2014, pp. 283–303. url: https://arxiv.org/pdf/1405.0351.pdf (cit. on p. 47).

[146] Len Sassaman, Bram Cohen, and Nick Mathewson. “The Pynchon Gate”. In: (). url: https:
//www.esat.kuleuven.be/cosic/publications/article-620.pdf
(cit. on p. 44).

[147] Vahid Sedighi, Rémi Cogranne, and Jessica Fridrich. “Content-adaptive steganography by
minimizing statistical detectability”. In: IEEE Transactions on Information Forensics and Security
11.2 (2015), pp. 221–234 (cit. on p. 148).

[148] Adi Shamir. “How to share a secret”. In: Communications of the ACM 22.11 (1979), pp. 612–613.
url: https://cs.jhu.edu/~sdoshi/crypto/papers/shamirturing.
pdf (cit. on pp. 35, 36, 79).

[149] Rob Sherwood, Bobby Bhattacharjee, and Aravind Srinivasan. “P5: A Protocol for Scalable
Anonymous Communication”. In: Proceedings of the 2002 IEEE Symposium on Security and
Privacy. May 2002. url: http://www.cs.umd.edu/projects/p5/p5.pdf
(cit. on p. 45).

[150] Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar, Michael Backes, and
Claudia Diaz. “A Survey on Routing in Anonymous Communication Protocols”. In: ACM
Computing Surveys 51.3 (June 2018), pp. 1–39. doi: 10.1145/3182658. url: https:
//dl.acm.org/citation.cfm?id=3182658 (cit. on p. 40).

[151] Peter W. Shor. “Polynomial-Time Algorithms For Prime Factorization And Discrete Logarithms
On A Quantum Computer”. In: SIAM Journal on Computing 26 (1997), pp. 1484–1509. url:
https://arxiv.org/pdf/quant-ph/9508027v2 (cit. on p. 18).

[152] Szusanne Sluizer and jonathan B. Postel. Mail Transfer Protocol. IETF. May 1981. doi: 10.
17487/RFC0780. url: https://www.rfc-editor.org/rfc/pdfrfc/
rfc780.txt.pdf (cit. on p. 96).

http://tools.ietf.org/pdf/rfc3922.pdf
http://tools.ietf.org/pdf/rfc3922.pdf
http://tools.ietf.org/pdf/rfc6120.pdf
http://tools.ietf.org/pdf/rfc6121.pdf
https://xmpp.org/extensions/xep-0135.html
https://xmpp.org/extensions/xep-0135.html
https://xmpp.org/extensions/xep-0066.html
https://xmpp.org/extensions/xep-0066.html
https://xmpp.org/extensions/xep-0231.html
https://xmpp.org/extensions/xep-0231.html
https://xmpp.org/extensions/xep-0234.pdf
https://xmpp.org/extensions/xep-0234.pdf
https://doi.org/10.1016/j.jnca.2018.04.002
https://www.sciencedirect.com/science/article/pii/S1084804518301280
https://www.sciencedirect.com/science/article/pii/S1084804518301280
https://arxiv.org/pdf/1405.0351.pdf
https://www.esat.kuleuven.be/cosic/publications/article-620.pdf
https://www.esat.kuleuven.be/cosic/publications/article-620.pdf
https://cs.jhu.edu/~sdoshi/crypto/papers/shamirturing.pdf
https://cs.jhu.edu/~sdoshi/crypto/papers/shamirturing.pdf
http://www.cs.umd.edu/projects/p5/p5.pdf
https://doi.org/10.1145/3182658
https://dl.acm.org/citation.cfm?id=3182658
https://dl.acm.org/citation.cfm?id=3182658
https://arxiv.org/pdf/quant-ph/9508027v2
https://doi.org/10.17487/RFC0780
https://doi.org/10.17487/RFC0780
https://www.rfc-editor.org/rfc/pdfrfc/rfc780.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc780.txt.pdf

A72 APPENDIX B. GLOSSARY

[153] Kaushal Solanki, Anindya Sarkar, and BS Manjunath. “YASS: Yet another steganographic
scheme that resists blind steganalysis”. In: International Workshop on Information Hiding.
Springer. 2007, pp. 16–31. url: http://vision.ece.ucsb.edu/sites/vision.
ece.ucsb.edu/files/publications/kaushal_2007_IWIH.pdf (cit. on
p. 25).

[154] NIST-FIPS Standard. “Announcing the advanced encryption standard (AES)”. In: Federal
Information Processing Standards Publication 197 (2001), pp. 1–51 (cit. on p. 17).

[155] Ronny Standtke. Pretty Good Anonymity: Achieving High Performance Anonymity Services with
a Single Node Architecture. Logos Verlag Berlin GmbH, 2013 (cit. on p. 46).

[156] A. Stevenson. Oxford Dictionary of English. Oxford reference online premium. OUP Oxford,
2010. isbn: 9780199571123. url: http://www.oed.com (cit. on p. A58).

[157] Almon Brown Strowger. Automatic Telephone-Exchange. en. Mar. 1891 (cit. on pp. 3, 35).

[158] Mansi S Subhedar and Vijay H Mankar. “Current status and key issues in image steganography:
A survey”. In: Computer science review 13 (2014), pp. 95–113 (cit. on p. 24).

[159] Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. “Towards an Analysis of Onion
Routing Security”. In: Proceedings of Designing Privacy Enhancing Technologies: Workshop on
Design Issues in Anonymity and Unobservability. Ed. by H. Federrath. Springer-Verlag, LNCS
2009, July 2000, pp. 96–114. url: https://apps.dtic.mil/dtic/tr/fulltext/
u2/a465255.pdf (cit. on p. 43).

[160] Parisa Tabriz and Nikita Borisov. “Breaking the Collusion Detection Mechanism of MorphMix”.
In: Proceedings of the Sixth Workshop on Privacy Enhancing Technologies (PET 2006). Ed. by
George Danezis and Philippe Golle. Cambridge, UK: Springer, June 2006, pp. 368–384. url:
https://hatswitch.org/nikita/papers/pet2006-morphmix.pdf
(cit. on p. 49).

[161] Biaoshuai Tao and Hongjun Wu. “Improving the biclique cryptanalysis of AES”. In:Australasian
Conference on Information Security and Privacy. Springer. 2015, pp. 39–56 (cit. on p. 17).

[162] Muldowney Thomas, Miller Mathew, Eatmon Ryan, and Saint-Andre Peter. XEP-0096: SI File
Transfer. 2004. url: http://xmpp.org/extensions/xep-0096.html (cit. on
pp. 98, 102).

[163] Martin Tompa and Heather Woll. “How to share a secret with cheaters”. In: journal of Cryp-
tology 1.3 (1989), pp. 133–138 (cit. on p. 35).

[164] Florian Tschorsch and Björn Scheurmann. “How (not) to build a transport layer for anonymity
overlays”. In: Proceedings of the ACM Sigmetrics/Performance Workshop on Privacy and An-
onymity for the Digital Economy. June 2012. url: http://pade12.mytestbed.net/
pade12-final6.pdf (cit. on pp. 22, 92).

[165] UNHR. International Covenant on Civil and Political Rights. 1966. url:http://www.ohchr.
org/en/professionalinterest/pages/ccpr.aspx (cit. on p. 5).

[166] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich. “Vuvuzela: Scalable
private messaging resistant to traffic analysis”. In: Proceedings of the 25th Symposium on
Operating Systems Principles. 2015, pp. 137–152. url: https://dl.acm.org/doi/
pdf/10.1145/2815400.2815417 (cit. on p. 46).

[167] Michael Waidner and Birgit Pfitzmann. “The dining cryptographers in the disco: Uncondi-
tional Sender and Recipient Untraceability”. In: Proceedings of EUROCRYPT 1989. Springer-
Verlag, LNCS 434, 1990. url: http://www.semper.org/sirene/publ/WaPf1_
89DiscoEngl.ps.gz (cit. on p. 39).

[168] Andreas Westfeld. “F5 - A Steganographic Algorithm”. In: none none (2002). url: http:
//www.ws.binghamton.edu/fridrich/research/f5.pdf (cit. on pp. 25,
73, 74, 106).

http://vision.ece.ucsb.edu/sites/vision.ece.ucsb.edu/files/publications/kaushal_2007_IWIH.pdf
http://vision.ece.ucsb.edu/sites/vision.ece.ucsb.edu/files/publications/kaushal_2007_IWIH.pdf
http://www.oed.com
https://apps.dtic.mil/dtic/tr/fulltext/u2/a465255.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a465255.pdf
https://hatswitch.org/nikita/papers/pet2006-morphmix.pdf
http://xmpp.org/extensions/xep-0096.html
http://pade12.mytestbed.net/pade12-final6.pdf
http://pade12.mytestbed.net/pade12-final6.pdf
http://www.ohchr.org/en/professionalinterest/pages/ccpr.aspx
http://www.ohchr.org/en/professionalinterest/pages/ccpr.aspx
https://dl.acm.org/doi/pdf/10.1145/2815400.2815417
https://dl.acm.org/doi/pdf/10.1145/2815400.2815417
http://www.semper.org/sirene/publ/WaPf1_89DiscoEngl.ps.gz
http://www.semper.org/sirene/publ/WaPf1_89DiscoEngl.ps.gz
http://www.ws.binghamton.edu/fridrich/research/f5.pdf
http://www.ws.binghamton.edu/fridrich/research/f5.pdf

A73

[169] Doug Whiting, Niels Ferguson, and Russell Housley. “RFC3610: Counter with cbc-mac (ccm)”.
In: (2003) (cit. on pp. 21, 91).

[170] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron Johnson. “Dissent in
numbers: Making strong anonymity scale”. In: Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12). 2012, pp. 179–182. url: http:
//dedis.cs.yale.edu/dissent/papers/osdi12.pdf (cit. on p. 50).

[171] Matthew K Wright, Micah Adler, Brian Neil Levine, and Clay Shields. “The predecessor
attack: An analysis of a threat to anonymous communications systems”. In: ACM Trans-
actions on Information and System Security (TISSEC) 7.4 (2004), pp. 489–522. url: https:
//scholarworks.umass.edu/cgi/viewcontent.cgi?article=1167&
context=cs_faculty_pubs (cit. on pp. 42, 46).

[172] Tao Zhou and Yaobin Lu. “Examining mobile instant messaging user loyalty from the perspec-
tives of network externalities and flow experience”. In: Computers in Human Behavior 27.2
(2011), pp. 883–889. doi: 10.1016/j.chb.2010.11.013 (cit. on pp. 62, 95).

[173] Li Zhuang, Feng Zhou, Ben Y Zhao, and Antony Rowstron. “Cashmere: Resilient anonymous
routing”. In: Proceedings of the 2nd conference on Symposium on Networked Systems Design
& Implementation-Volume 2. USENIX Association. 2005, pp. 301–314. url: https://www.
usenix.org/legacy/publications/library/proceedings/nsdi05/
tech/full_papers/zhuang/zhuang.pdf (cit. on p. 45).

http://dedis.cs.yale.edu/dissent/papers/osdi12.pdf
http://dedis.cs.yale.edu/dissent/papers/osdi12.pdf
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1167&context=cs_faculty_pubs
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1167&context=cs_faculty_pubs
https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1167&context=cs_faculty_pubs
https://doi.org/10.1016/j.chb.2010.11.013
https://www.usenix.org/legacy/publications/library/proceedings/nsdi05/tech/full_papers/zhuang/zhuang.pdf
https://www.usenix.org/legacy/publications/library/proceedings/nsdi05/tech/full_papers/zhuang/zhuang.pdf
https://www.usenix.org/legacy/publications/library/proceedings/nsdi05/tech/full_papers/zhuang/zhuang.pdf

E Index
adversary, 55

censoring, 57
observing, 57

AMQP, 98
AN.ON, 45
AP3, 45
asymmetric encryption, 18
Atom, 50
attack

bugging, 157, 163, 169
censorship, 161
credibility, 161
DoS, 161
exhausting quota, 162
highlighting, 162
hijacking, 169
hotspot, 156, 168
identity, 162
interaction graph, 158
routing, 164
side channel, 163
sizing, 157
tagging, 156
timing analysis, 168

Babel, 41
broadcast-based system, 173
bugging, 61

Cashmere, 45
CBC, 20
CCM, 21
censorship, 25
censorship circumvention, 24
CFB, 21
CMC, 22
CoAP, 98
covert channel, 24
Crowds, 38, 42
CTR, 21

DC net, 171
DC network, 39
DHT, 39
Dissent, 49
distributed hash tables, see DHT

ECB, 20, 22
ElGamal, 19

elliptic curves, 18
email, 31
EME, 22
entropy, 150

F5, 25, 106
File Transfer Protocol, see FTP
Freenet, 51
FTP, 96

garlic routing, 38
GCM, 21
Gnutella, 51
Gnutella2, 51

Herbivore, 49
homomorphic encryption, 19
Hordes, 50
HTTP, 96
hyper transfer protocol, see HTTP

I2P, 44
identity, 69

ephemeral, 69, 112, 118, 176
Item of Interest, A59

Jabber, see XMPP

Karaoke, 47

LRW, 22

mail transport, see message transport
McEliece, 18
MCMix, 47
message, 76

accounting, 76
blending, 104
decoy, 107
diagnosis, 169
processing in, 108
processing out, 109
routing, 64, 74, 79, 132, 177

mimic routes, 38
mixnet, 36
MMS, 99
MorphMix, 49
MQTT, 97
multi-use reply block, see MURB
MURB, 16, 114, 175

INDEX A75

node, 69
NTRU, 19

OAEP, 23
OCB, 21
OFB, 21
onion routing, 37
operation, 110, 118, 176

encrypt, 152
encryption, 82
redundancy, 79, 152
split, 83, 151

P5, 45
payload, 118
payload block, 70, 75, 77
PCBC, 21
peer-to-peer privacy protocol, see P5
PGA, 46
PGP, 35
PIR, 39
PKCS7, 23
Pretty Good Anonymity, see PGA
Pung, 48

remailer, 37, 170
cypherpunk, 41
Mixmaster, 42
Mixminion, 44
pseudonymous, 41

Riffle, 47
Riposte, 48
routing graph, 132
RSA, 18
RSAES-PKCS1-v1_5, 23
RSAS-OAEP, 23

s/mime, 34
Salsa, 49
SCION, 47
single-use reply block, see SURB
SMS, 99
SMTP, 31, 99
SOR, 45
ssh based onion routing, see SOR
steganography, 24
SURB, 16
symmetric encryption, 17

taging, 60
Tarzan, 49
TFTP, 97

Threat model, 55
timing channel, 25
Tor, 42
Trivial File Transfer Protocol, see TFTP

Verdict, 50
Vuvuzela, 46

WAMP, 98
workspace, 69, 108

XMPP, 35, 98, 102
XTX, 22

A76 INDEX

A77

E Short Biography
Martin Gwerder was born 20. July 1972 in Glarus, Switzerland.
He is currently a PhD student at the University of Basel.

After having concluded his studies at the polytechnic at Brugg
in 1997, he did a postgraduate education as a master of business
and engineering. Following that, he changed to the university
track doing an MSc in Informatics at FernUniversität in Hagen.

While doing this, he steadily broadened his horizon by working
for industry, banking, and government as an engineer and
architect in security-related positions.

He currently holds a lecturer position for cloud and security at
the University of Applied Sciences Northwestern Switzerland.
His primary expertise is in the field of security-related problems
dealing with data protection, distribution, confidentiality, and
anonymity.

	I Introduction
	Preface
	Our Approach

	Our Contribution
	Scope and Aproach
	Notation
	Cryptography
	Code and Commands
	Hyperlinking

	II Relevant Concepts and Technologies
	Anonymity and Trust-Related Research
	Definition of Anonymity
	k-Anonymity
	l-Diversity
	t-Closeness
	Zero Knowledge Proofs
	Censorship
	Censorship Resistance
	Parrot Circumvention

	Single Use Reply Blocks and Multi-Use Reply Blocks
	Zero Trust

	Related Cryptographic Theory and Algorithms
	Deniable Encryption
	Key Sizes
	Cipher Mode
	Summary of Cipher Modes
	Padding
	RSAES-PKCS1-v1_5 and RSAES-OAEP
	PKCS7
	OAEP with SHA and MGF1 padding

	Censorship Circumvention
	Covert Channel and Channel Exploitations
	Steganography
	Timing Channels
	Technical Forms of Censorship
	Making Systems Unavailable by Censoring Lookups
	Making Systems Unavailable by Disrupting System Traffic
	Making Systems Unavailable by Interfering with System Traffic

	Spread Spectrum in Networking Protocols

	III Anonymous Communication Systems
	Well Known Standard Protocols
	S/MIME (1996)
	Pretty Good Privacy (1996)
	XMPP

	Information in Anonymizing Protocols
	Mixing
	Anonymous Remailers
	Onion Routing
	Garlic Routing
	Crowds
	Mimic Routes
	Distributed Hash Tables
	Dining Cryptographer Networks
	Private Information Retrieval

	Academic Protocols and Implementations
	Characteristics of Known Anonymity Implementations
	Resenders, Onion Routers, and MixNet-Based Systems
	Pseudonymous Remailers (1981)
	Cypherpunk Remailers (approx. 1993)
	Babel (1996)
	Mixmaster-Remailers (1996)
	Crowds (1997)
	Tor (2000)
	I2P (2001)
	Mixminion-Remailers (2002)
	P5 (2002)
	AN.ON (2003)
	AP3 (2004)
	Cashmere (2005)
	SOR (2012)
	PGA (2013)
	Vuvuzela (2015)
	Riffle (2016)
	MCMix (2017)
	SCION (2017)
	Karaoke (2018)

	PIR-Based Systems
	Riposte (2015)
	Pung (2016)

	Distributed Hash Tables
	Tarzan (2002)
	MorphMix (2002)
	Salsa (2008)

	Dining Cryptographer-Based Networks
	Herbivore (2003)
	Dissent (2010)
	Verdict (2013)

	Broadcast and Multicast Networks
	Hordes (2002)
	Atom (2016)

	Distributed Storage Systems
	Freenet (2000)
	Gnutella (2000)
	Gnutella2 (2002)

	IV The MessageVortex System
	Requirements for an Anonymizing Protocol
	Threat Model
	Observing Adversaries
	Censoring Adversaries
	Realism of the Assumed Adversaries

	Required Properties for Our Unobservable Protocol
	Required System Properties
	Message Requirements
	Operational Requirements

	Rationale
	System Design and Infrastructure
	Message and Routing
	Summarizing Chosen Approaches for MessageVortex

	Protocol
	Protocol Terminology
	Key Components
	Nodes and Their Identities
	Workspaces and Ephemeral Identities
	Protocol Layers
	Transport Layer
	Blending Layer
	Processing a message received from the transport layer
	Processing a message received from the routing layer
	Credible content creation for the transport layer

	Routing Layer
	Accounting Layer

	VortexMessages
	Message Structure Related to Censorship Circumvention
	Message Structure Related to Information Leaking

	Routing Operations
	The addRedundancy and removeRedundancy Operations
	The encrypt and decrypt Operations
	The mergePayload and splitPayload operation

	Summary

	V Implementation
	Algorithms, Encodings, and Protocols Selection
	Encoding Scheme
	Cipher Selection
	Mode Selections
	Padding Selection
	RSAES-PKCS1-v1_5 and RSAES-OAEP
	PKCS7
	OAEP with SHA and MGF1 Padding
	Honorable Mention: A Padding for redundancy Operations
	Pseudo Random Number Generator Selection

	Transport Layer Protocol Selection
	Applied Criteria
	Analyzed Protocols
	Analysis
	Results

	Transport Layer Implementation
	Implementation of a Dummy Transport Layer
	Implementation of an Email Transport Layer
	Implementation of an XMPP Transport Layer
	Distributed Configuration and Runtime Store of Processing Content

	Blending Layer Implementation
	Embedding Spec
	Extraction of the Blended Message
	Plain Embedding
	Implementation of F5 Blending

	Message Processing by the Blending Layer
	Decoy Content Generation

	Routing Layer Implementation
	ASN.1 DER-Encoding Scheme for VortexMessages
	The Processing of Messages
	Workspace Layout
	Processing of Incoming Messages
	Processing of Outgoing Messages
	Implementation of Operations

	Handling Requests
	Requesting a new Ephemeral Identity
	Replacing an Existing Node Specification or Proving a Sender Identity
	Replacing an Existing Reply Block

	Accounting Layer Implementation
	Usability-Related Implementation Details
	Addressing and Address Representations
	Linking to Common User Agents

	Efficiency-Related Implementation Details
	Node Storage Management
	Storage Management of Ephemeral Identities, Operations, and Payload Blocks
	Life Cycle of Requests
	Minimizing the Memory Footprint of Message Processing

	VI Operational concerns
	General Operational Concerns
	Hardware
	Addressing [def:VortexNode]VortexNodes
	Client
	MessageVortex Accounts
	[def:VortexNode]VortexNode Types
	Public [def:VortexNode]VortexNode
	Stealth [def:VortexNode]VortexNode
	Hidden [def:VortexNode]VortexNode

	Routing
	Strategies for Composing Routing Blocks
	Strategies for Minimizing Impact and Maximizing Effect when Routing Foreign Messages
	Operational Aspects of MURBs

	Routing Algorithms Suitable for Achieving Anonymity
	The Routing Block
	A Simple Routing Strategy

	Routing Diagnosis and Reputation Building
	Redundancy and Distribution Strategy

	Protocol Bootstrapping
	Key Distribution for Endpoints
	Key Acquisition for Routing Nodes

	Real-World Problems when Using MessageVortex
	Size Restrictions of the Transport Layer
	Redundancy of the [def:VortexNode]VortexNode

	VII Analysis of MessageVortex
	Identification of Attacks and Mitigations
	Static Attacks
	Dynamic Attacks

	Static Analysis
	Analysis of the Blending and Transport Layer
	Identifying a [def:VortexMessage]VortexMessage Endpoint
	Analysis of the F5-Embedding Method

	Analysis of Plain Embedding
	Analysis of Routing Layer
	Analysis of Core Operations
	Splitting and Merging
	Encryption and Decryption Operations
	Add and Remove Redundancy Operations

	Knowledge of a Node Sending the First Message
	Intermediate Node Routing Layer
	Security of Protocol Blocks

	Dynamic Attack Analysis
	Well-Known Attacks
	Broken Encryption Algorithms
	Attacks Targeting Anonymity
	Probing Attacks
	Hotspot Attacks
	Message Tagging and Tracing
	Side-Channel Attacks
	Sizing Attacks
	Bugging Attacks
	Analysis by Building Interaction Graphs

	Denial of Service Attacks
	Censorship
	Denial of Service
	Credibility Attack
	Denial of Service by Exhausting Quotas or Limits

	Attacking Sending and Receiving Identities of the MessageVortex System
	Traffic Highlighting

	Recovery of Previously Carried out Operations

	Side Channel Leaking
	Software Updates and Related Data Streams
	Bugging in Transported Messages
	Exploiting MURBS

	Achieved Anonymity and Shortcomings
	Measuring Anonymity
	Attacking Routing Participants
	Attacking Anonymity through Traffic Analysis
	Attacking Anonymity through Timing Analysis
	Attacking Anonymity through Throughput Analysis
	Attacking Anonymity through Routing Block Analysis
	Attacking Anonymity through Header Analysis
	Attacking Anonymity through Payload Analysis
	Attacking Anonymity through Bugging
	Attacking Anonymity through Replay Analysis
	Diagnosability of Traffic
	Hijacking of Header and Routing Blocks
	Partial Implicit Routing Diagnosis
	Partial Explicit Routing Diagnosis

	Analysis of the Effectiveness of Attack Schemes
	Degree of Anonymization in Comparison
	Comparing MessageVortex to Remailers
	Comparing MessageVortex to a DC Network-Based System
	Comparing MessageVortex to a Broadcast-Based System

	Recommendations on Using the MessageVortex Protocol
	Reuse of Routing Blocks
	Use of Ephemeral Identities
	Recommendations on Operations Applied on Nodes
	Reuse of Keys, IVs, or Routing Patterns
	Recommendations on Choosing involved Nodes
	Message Content
	Splitting Message Content

	Routing
	Redundancy
	Operation Considerations
	Anonymity

	VIII Discussion and Conclusion
	The Achieved Properties of the Protocol
	Measuring up to the Requirements
	Achieved Level of Anonymity and Detectability

	Weaknesses of the Protocol
	Missing Research
	Lack of Base Data
	Lack of Implementations
	Further and Missing Research

	Potential and Improvements
	Improvements in Blending
	Operations Agility
	Simplified and Anonymity-Conformant Bootstrapping

	Closing Words

	IX Appendix
	The RFC draft document
	Glossary
	Short Biography

